1623 lines
48 KiB
Mathematica
1623 lines
48 KiB
Mathematica
|
|
function greedyPopMix_parallel(options)
|
|||
|
|
|
|||
|
|
global PARTITION;
|
|||
|
|
global COUNTS;
|
|||
|
|
global SUMCOUNTS;
|
|||
|
|
global POP_LOGML;
|
|||
|
|
clearGlobalVars;
|
|||
|
|
|
|||
|
|
% LASKENNAN ALKUARVOJEN M<EFBFBD><EFBFBD>RITT<EFBFBD>MINEN
|
|||
|
|
outp = [options.outputMat '.txt'];
|
|||
|
|
inp = options.dataFile;
|
|||
|
|
|
|||
|
|
if isequal(options.dataType,'numeric') %Raakadata
|
|||
|
|
data = load(options.dataFile);
|
|||
|
|
ninds = testaaOnkoKunnollinenBapsData(data); %TESTAUS
|
|||
|
|
if (ninds==0)
|
|||
|
|
disp('*** ERROR: Incorrect Data-file.');
|
|||
|
|
return;
|
|||
|
|
end
|
|||
|
|
[data, rows, alleleCodes, noalle, adjprior, priorTerm] = handlePopData(data);
|
|||
|
|
rowsFromInd = 0; %Ei tiedet?
|
|||
|
|
|
|||
|
|
if ~isempty(options.groupname)
|
|||
|
|
popnames = initPopNames(options.groupname);
|
|||
|
|
if (size(popnames,1)~=ninds)
|
|||
|
|
disp('*** ERROR: Incorrect name-file.');
|
|||
|
|
popnames = [];
|
|||
|
|
end
|
|||
|
|
else
|
|||
|
|
popnames = [];
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
elseif isequal(options.dataType,'genepop')
|
|||
|
|
kunnossa = testaaGenePopData(options.dataFile);
|
|||
|
|
if kunnossa==0
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
[data, popnames]=lueGenePopDataPop(options.dataType);
|
|||
|
|
[data, rows, alleleCodes, noalle, adjprior, priorTerm] = handlePopData(data);
|
|||
|
|
rowsFromInd = 2; %Tiedet<EFBFBD><EFBFBD>n GenePop:in tapauksessa.
|
|||
|
|
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if ~isequal(options.dataType, 'matlab')
|
|||
|
|
a_data = data(:,1:end-1);
|
|||
|
|
|
|||
|
|
npops = size(rows,1);
|
|||
|
|
PARTITION = 1:npops'; %Jokainen "yksil? eli populaatio on oma ryhm<EFBFBD>ns?
|
|||
|
|
[sumcounts, counts, logml] = ...
|
|||
|
|
initialPopCounts(a_data, npops, rows, noalle, adjprior);
|
|||
|
|
COUNTS = counts; SUMCOUNTS = sumcounts;
|
|||
|
|
POP_LOGML = computePopulationLogml(1:npops, adjprior, priorTerm);
|
|||
|
|
|
|||
|
|
clear('counts', 'sumcounts','pathname','filename','vast2',...
|
|||
|
|
'vast3','vast4');
|
|||
|
|
[Z,dist] = getPopDistancesByKL(adjprior); %Saadaan COUNTS:in avulla.
|
|||
|
|
|
|||
|
|
% save_preproc = questdlg('Do you wish to save pre-processed data?',...
|
|||
|
|
% 'Save pre-processed data?',...
|
|||
|
|
% 'Yes','No','Yes');
|
|||
|
|
% if isequal(save_preproc,'Yes');
|
|||
|
|
% waitALittle;
|
|||
|
|
% [filename, pathname] = uiputfile('*.mat','Save pre-processed data as');
|
|||
|
|
% kokonimi = [pathname filename];
|
|||
|
|
% c.data = data; c.rows = rows; c.alleleCodes = alleleCodes;
|
|||
|
|
% c.noalle = noalle; c.adjprior = adjprior; c.priorTerm = priorTerm;
|
|||
|
|
% c.dist = dist; c.Z = Z; c.popnames = popnames; c.rowsFromInd = rowsFromInd;
|
|||
|
|
% c.npops = npops; c.logml = logml;
|
|||
|
|
% save(kokonimi,'c');
|
|||
|
|
% clear c;
|
|||
|
|
% end;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if isequal(options.dataType, 'matlab')
|
|||
|
|
struct_array = load(options.dataFile);
|
|||
|
|
if isfield(struct_array,'c') %Matlab versio
|
|||
|
|
c = struct_array.c;
|
|||
|
|
if ~isfield(c,'rows')
|
|||
|
|
disp('Incorrect file format');
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
elseif isfield(struct_array,'rows') %Mideva versio
|
|||
|
|
c = struct_array;
|
|||
|
|
else
|
|||
|
|
disp('*** ERROR: Incorrect file format');
|
|||
|
|
return;
|
|||
|
|
end
|
|||
|
|
data = double(c.data); rows = c.rows; alleleCodes = c.alleleCodes;
|
|||
|
|
noalle = c.noalle; adjprior = c.adjprior; priorTerm = c.priorTerm;
|
|||
|
|
dist = c.dist; Z = c.Z; popnames = c.popnames; rowsFromInd = c.rowsFromInd;
|
|||
|
|
clear c;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if strcmp(options.fixedK, 'yes')
|
|||
|
|
fixedK = 1;
|
|||
|
|
else
|
|||
|
|
fixedK = 0;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
npopstext = [];
|
|||
|
|
npopstextExtra = options.initialK;
|
|||
|
|
if length(npopstextExtra)>=255
|
|||
|
|
npopstextExtra = npopstextExtra(1:255);
|
|||
|
|
npopstext = [npopstext ' ' npopstextExtra];
|
|||
|
|
teksti = 'The input field length limit (255 characters) was reached. Input more values: ';
|
|||
|
|
else
|
|||
|
|
% -----------------------------------------------------
|
|||
|
|
% Set the limit of the input value.
|
|||
|
|
% Modified by Jing Tang, 30.12.2005
|
|||
|
|
if max(npopstextExtra) > size(data,1)
|
|||
|
|
error('Initial K larger than the sample size are not accepted. ');
|
|||
|
|
else
|
|||
|
|
npopstext = [npopstext ' ' num2str(npopstextExtra)];
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
clear teksti;
|
|||
|
|
if isempty(npopstext) || length(npopstext)==1
|
|||
|
|
return
|
|||
|
|
else
|
|||
|
|
npopsTaulu = str2num(npopstext);
|
|||
|
|
ykkoset = find(npopsTaulu==1);
|
|||
|
|
npopsTaulu(ykkoset) = []; % Mik<EFBFBD>li ykk<EFBFBD>si?annettu yl<EFBFBD>rajaksi, ne poistetaan.
|
|||
|
|
if isempty(npopsTaulu)
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
clear ykkoset;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
c.data=data; c.rows = rows; c.alleleCodes = alleleCodes;
|
|||
|
|
c.noalle = noalle; c.adjprior = adjprior; c.priorTerm = priorTerm;
|
|||
|
|
c.dist=dist; c.Z=Z; c.rowsFromInd = rowsFromInd;
|
|||
|
|
|
|||
|
|
if fixedK
|
|||
|
|
% Only the first value of npopsTaulu is used
|
|||
|
|
npops = npopsTaulu(1);
|
|||
|
|
nruns = length(npopsTaulu);
|
|||
|
|
[logml, npops, partitionSummary]=indMix_fixK(c,npops,nruns,1);
|
|||
|
|
else
|
|||
|
|
[logml, npops, partitionSummary]=indMix(c,npopsTaulu,1);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if logml==1
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
data = data(:,1:end-1);
|
|||
|
|
|
|||
|
|
viewPopMixPartition(PARTITION, rows, popnames);
|
|||
|
|
%npops = poistaTyhjatPopulaatiot(npops);
|
|||
|
|
%POP_LOGML = computePopulationLogml(1:npops, adjprior, priorTerm);
|
|||
|
|
|
|||
|
|
% h0 = findobj('Tag','filename1_text'); inp = get(h0,'String');
|
|||
|
|
% h0 = findobj('Tag','filename2_text');
|
|||
|
|
% outp = get(h0,'String');
|
|||
|
|
changesInLogml = writeMixtureInfoPop(logml, rows, data, adjprior, priorTerm, ...
|
|||
|
|
outp,inp,partitionSummary, popnames, fixedK);
|
|||
|
|
|
|||
|
|
if exist('baps4_output.baps','file')
|
|||
|
|
copyfile('baps4_output.baps',outp)
|
|||
|
|
delete('baps4_output.baps')
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if rowsFromInd==0
|
|||
|
|
%K<EFBFBD>ytettiin BAPS-formaattia, eik?rowsFromInd ole tunnettu.
|
|||
|
|
[popnames, rowsFromInd] = findOutRowsFromInd(popnames, rows);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
groupPartition = PARTITION;
|
|||
|
|
|
|||
|
|
fiksaaPartitioYksiloTasolle(rows, rowsFromInd);
|
|||
|
|
% The logml is saved for parallel computing
|
|||
|
|
c.logml = logml;
|
|||
|
|
c.PARTITION = PARTITION; c.COUNTS = COUNTS; c.SUMCOUNTS = SUMCOUNTS;
|
|||
|
|
c.alleleCodes = alleleCodes; c.adjprior = adjprior;
|
|||
|
|
c.rowsFromInd = rowsFromInd; c.popnames = popnames;
|
|||
|
|
c.data = data; c.npops = npops; c.noalle = noalle;
|
|||
|
|
c.mixtureType = 'popMix'; c.groupPartition = groupPartition;
|
|||
|
|
c.rows = rows; c.changesInLogml = changesInLogml;
|
|||
|
|
fprintf(1,'Saving the result...')
|
|||
|
|
try
|
|||
|
|
% save(options.outputMat, 'c');
|
|||
|
|
save(options.outputMat, 'c', '-v7.3'); % added by Lu Cheng, 08.06.2012
|
|||
|
|
fprintf(1,'Finished.\n');
|
|||
|
|
catch
|
|||
|
|
display('*** ERROR in saving the result.');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
% -------------------------------------------------------------------------
|
|||
|
|
% - Subfunctions
|
|||
|
|
% -------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
function [newData, rows, alleleCodes, noalle, adjprior, priorTerm] = handlePopData(raw_data)
|
|||
|
|
% Alkuper<EFBFBD>isen datan viimeinen sarake kertoo, milt?yksil<EFBFBD>lt?
|
|||
|
|
% kyseinen rivi on per<EFBFBD>isin. Funktio muuttaa alleelikoodit
|
|||
|
|
% siten, ett?yhden lokuksen j koodit saavat arvoja
|
|||
|
|
% v<EFBFBD>lill?1,...,noalle(j). Ennen t<EFBFBD>t?muutosta alleeli, jonka
|
|||
|
|
% koodi on nolla muutetaan.
|
|||
|
|
|
|||
|
|
|
|||
|
|
data = raw_data;
|
|||
|
|
nloci=size(raw_data,2)-1;
|
|||
|
|
|
|||
|
|
dataApu = data(:,1:nloci);
|
|||
|
|
nollat = find(dataApu==0);
|
|||
|
|
if ~isempty(nollat)
|
|||
|
|
isoinAlleeli = max(max(dataApu));
|
|||
|
|
dataApu(nollat) = isoinAlleeli+1;
|
|||
|
|
data(:,1:nloci) = dataApu;
|
|||
|
|
end
|
|||
|
|
dataApu = []; nollat = []; isoinAlleeli = [];
|
|||
|
|
|
|||
|
|
noalle=zeros(1,nloci);
|
|||
|
|
alleelitLokuksessa = cell(nloci,1);
|
|||
|
|
for i=1:nloci
|
|||
|
|
alleelitLokuksessaI = unique(data(:,i));
|
|||
|
|
alleelitLokuksessa{i,1} = alleelitLokuksessaI(find(alleelitLokuksessaI>=0));
|
|||
|
|
noalle(i) = length(alleelitLokuksessa{i,1});
|
|||
|
|
end
|
|||
|
|
alleleCodes = zeros(max(noalle),nloci);
|
|||
|
|
for i=1:nloci
|
|||
|
|
alleelitLokuksessaI = alleelitLokuksessa{i,1};
|
|||
|
|
puuttuvia = max(noalle)-length(alleelitLokuksessaI);
|
|||
|
|
alleleCodes(:,i) = [alleelitLokuksessaI; zeros(puuttuvia,1)];
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
for loc = 1:nloci
|
|||
|
|
for all = 1:noalle(loc)
|
|||
|
|
data(find(data(:,loc)==alleleCodes(all,loc)), loc)=all;
|
|||
|
|
end;
|
|||
|
|
end;
|
|||
|
|
|
|||
|
|
nind = max(data(:,end));
|
|||
|
|
%rows = cell(nind,1);
|
|||
|
|
rows = zeros(nind,2);
|
|||
|
|
for i=1:nind
|
|||
|
|
rivit = find(data(:,end)==i)';
|
|||
|
|
rows(i,1) = min(rivit);
|
|||
|
|
rows(i,2) = max(rivit);
|
|||
|
|
end
|
|||
|
|
newData = data;
|
|||
|
|
|
|||
|
|
adjprior = zeros(max(noalle),nloci);
|
|||
|
|
priorTerm = 0;
|
|||
|
|
for j=1:nloci
|
|||
|
|
adjprior(:,j) = [repmat(1/noalle(j), [noalle(j),1]) ; ones(max(noalle)-noalle(j),1)];
|
|||
|
|
priorTerm = priorTerm + noalle(j)*gammaln(1/noalle(j));
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
%----------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function clearGlobalVars
|
|||
|
|
|
|||
|
|
global COUNTS; COUNTS = [];
|
|||
|
|
global SUMCOUNTS; SUMCOUNTS = [];
|
|||
|
|
global PARTITION; PARTITION = [];
|
|||
|
|
global POP_LOGML; POP_LOGML = [];
|
|||
|
|
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
function [Z,distances] = getPopDistancesByKL(adjprior)
|
|||
|
|
% Laskee populaatioille et<EFBFBD>isyydet
|
|||
|
|
% k<EFBFBD>ytt<EFBFBD>en KL-divergenssi?
|
|||
|
|
global COUNTS;
|
|||
|
|
maxnoalle = size(COUNTS,1);
|
|||
|
|
nloci = size(COUNTS,2);
|
|||
|
|
npops = size(COUNTS,3);
|
|||
|
|
distances = zeros(nchoosek(npops,2),1);
|
|||
|
|
|
|||
|
|
d = zeros(maxnoalle, nloci, npops);
|
|||
|
|
prior = adjprior;
|
|||
|
|
prior(find(prior==1))=0;
|
|||
|
|
nollia = find(all(prior==0)); %Lokukset, joissa oli havaittu vain yht?alleelia.
|
|||
|
|
prior(1,nollia)=1;
|
|||
|
|
for pop1 = 1:npops
|
|||
|
|
d(:,:,pop1) = (squeeze(COUNTS(:,:,pop1))+prior) ./ repmat(sum(squeeze(COUNTS(:,:,pop1))+prior),maxnoalle,1);
|
|||
|
|
%dist1(pop1) = (squeeze(COUNTS(:,:,pop1))+adjprior) ./ repmat((SUMCOUNTS(pop1,:)+adjprior), maxnoalle, 1);
|
|||
|
|
end
|
|||
|
|
pointer = 1;
|
|||
|
|
for pop1 = 1:npops-1
|
|||
|
|
for pop2 = pop1+1:npops
|
|||
|
|
dist1 = d(:,:,pop1); dist2 = d(:,:,pop2);
|
|||
|
|
div12 = sum(sum(dist1.*log2((dist1+10^-10) ./ (dist2+10^-10))))/nloci;
|
|||
|
|
div21 = sum(sum(dist2.*log2((dist2+10^-10) ./ (dist1+10^-10))))/nloci;
|
|||
|
|
div = (div12+div21)/2;
|
|||
|
|
distances(pointer) = div;
|
|||
|
|
pointer = pointer+1;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
Z=linkage(distances');
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function Z = linkage(Y, method)
|
|||
|
|
[k, n] = size(Y);
|
|||
|
|
m = (1+sqrt(1+8*n))/2;
|
|||
|
|
if k ~= 1 | m ~= fix(m)
|
|||
|
|
error('The first input has to match the output of the PDIST function in size.');
|
|||
|
|
end
|
|||
|
|
if nargin == 1 % set default switch to be 'co'
|
|||
|
|
method = 'co';
|
|||
|
|
end
|
|||
|
|
method = lower(method(1:2)); % simplify the switch string.
|
|||
|
|
monotonic = 1;
|
|||
|
|
Z = zeros(m-1,3); % allocate the output matrix.
|
|||
|
|
N = zeros(1,2*m-1);
|
|||
|
|
N(1:m) = 1;
|
|||
|
|
n = m; % since m is changing, we need to save m in n.
|
|||
|
|
R = 1:n;
|
|||
|
|
for s = 1:(n-1)
|
|||
|
|
X = Y;
|
|||
|
|
[v, k] = min(X);
|
|||
|
|
i = floor(m+1/2-sqrt(m^2-m+1/4-2*(k-1)));
|
|||
|
|
j = k - (i-1)*(m-i/2)+i;
|
|||
|
|
Z(s,:) = [R(i) R(j) v]; % update one more row to the output matrix A
|
|||
|
|
I1 = 1:(i-1); I2 = (i+1):(j-1); I3 = (j+1):m; % these are temp variables.
|
|||
|
|
U = [I1 I2 I3];
|
|||
|
|
I = [I1.*(m-(I1+1)/2)-m+i i*(m-(i+1)/2)-m+I2 i*(m-(i+1)/2)-m+I3];
|
|||
|
|
J = [I1.*(m-(I1+1)/2)-m+j I2.*(m-(I2+1)/2)-m+j j*(m-(j+1)/2)-m+I3];
|
|||
|
|
|
|||
|
|
switch method
|
|||
|
|
case 'si' %single linkage
|
|||
|
|
Y(I) = min(Y(I),Y(J));
|
|||
|
|
case 'av' % average linkage
|
|||
|
|
Y(I) = Y(I) + Y(J);
|
|||
|
|
case 'co' %complete linkage
|
|||
|
|
Y(I) = max(Y(I),Y(J));
|
|||
|
|
case 'ce' % centroid linkage
|
|||
|
|
K = N(R(i))+N(R(j));
|
|||
|
|
Y(I) = (N(R(i)).*Y(I)+N(R(j)).*Y(J)-(N(R(i)).*N(R(j))*v^2)./K)./K;
|
|||
|
|
case 'wa'
|
|||
|
|
Y(I) = ((N(R(U))+N(R(i))).*Y(I) + (N(R(U))+N(R(j))).*Y(J) - ...
|
|||
|
|
N(R(U))*v)./(N(R(i))+N(R(j))+N(R(U)));
|
|||
|
|
end
|
|||
|
|
J = [J i*(m-(i+1)/2)-m+j];
|
|||
|
|
Y(J) = []; % no need for the cluster information about j.
|
|||
|
|
|
|||
|
|
% update m, N, R
|
|||
|
|
m = m-1;
|
|||
|
|
N(n+s) = N(R(i)) + N(R(j));
|
|||
|
|
R(i) = n+s;
|
|||
|
|
R(j:(n-1))=R((j+1):n);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
%-----------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function [sumcounts, counts, logml] = ...
|
|||
|
|
initialPopCounts(data, npops, rows, noalle, adjprior)
|
|||
|
|
|
|||
|
|
nloci=size(data,2);
|
|||
|
|
counts = zeros(max(noalle),nloci,npops);
|
|||
|
|
sumcounts = zeros(npops,nloci);
|
|||
|
|
|
|||
|
|
for i=1:npops
|
|||
|
|
for j=1:nloci
|
|||
|
|
i_rivit = rows(i,1):rows(i,2);
|
|||
|
|
havainnotLokuksessa = find(data(i_rivit,j)>=0);
|
|||
|
|
sumcounts(i,j) = length(havainnotLokuksessa);
|
|||
|
|
for k=1:noalle(j)
|
|||
|
|
alleleCode = k;
|
|||
|
|
N_ijk = length(find(data(i_rivit,j)==alleleCode));
|
|||
|
|
counts(k,j,i) = N_ijk;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
logml = laskeLoggis(counts, sumcounts, adjprior);
|
|||
|
|
|
|||
|
|
|
|||
|
|
%-----------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function loggis = laskeLoggis(counts, sumcounts, adjprior)
|
|||
|
|
npops = size(counts,3);
|
|||
|
|
|
|||
|
|
logml2 = sum(sum(sum(gammaln(counts+repmat(adjprior,[1 1 npops]))))) ...
|
|||
|
|
- npops*sum(sum(gammaln(adjprior))) - ...
|
|||
|
|
sum(sum(gammaln(1+sumcounts)));
|
|||
|
|
loggis = logml2;
|
|||
|
|
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function kunnossa = testaaGenePopData(tiedostonNimi)
|
|||
|
|
% kunnossa == 0, jos data ei ole kelvollinen genePop data.
|
|||
|
|
% Muussa tapauksessa kunnossa == 1.
|
|||
|
|
|
|||
|
|
kunnossa = 0;
|
|||
|
|
fid = fopen(tiedostonNimi);
|
|||
|
|
line1 = fgetl(fid); %ensimm<EFBFBD>inen rivi
|
|||
|
|
line2 = fgetl(fid); %toinen rivi
|
|||
|
|
line3 = fgetl(fid); %kolmas
|
|||
|
|
|
|||
|
|
if (isequal(line1,-1) | isequal(line2,-1) | isequal(line3,-1))
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
if (testaaPop(line1)==1 | testaaPop(line2)==1)
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
if testaaPop(line3)==1
|
|||
|
|
%2 rivi t<EFBFBD>ll<EFBFBD>in lokusrivi
|
|||
|
|
nloci = rivinSisaltamienMjonojenLkm(line2);
|
|||
|
|
line4 = fgetl(fid);
|
|||
|
|
if isequal(line4,-1)
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
if ~any(line4==',')
|
|||
|
|
% Rivin nelj?t<EFBFBD>ytyy sis<EFBFBD>lt<EFBFBD><EFBFBD> pilkku.
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
pointer = 1;
|
|||
|
|
while ~isequal(line4(pointer),',') %Tiedet<EFBFBD><EFBFBD>n, ett?pys<EFBFBD>htyy
|
|||
|
|
pointer = pointer+1;
|
|||
|
|
end
|
|||
|
|
line4 = line4(pointer+1:end); %pilkun j<EFBFBD>lkeinen osa
|
|||
|
|
nloci2 = rivinSisaltamienMjonojenLkm(line4);
|
|||
|
|
if (nloci2~=nloci)
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
else
|
|||
|
|
line = fgetl(fid);
|
|||
|
|
lineNumb = 4;
|
|||
|
|
while (testaaPop(line)~=1 & ~isequal(line,-1))
|
|||
|
|
line = fgetl(fid);
|
|||
|
|
lineNumb = lineNumb+1;
|
|||
|
|
end
|
|||
|
|
if isequal(line,-1)
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
nloci = lineNumb-2;
|
|||
|
|
line4 = fgetl(fid); %Eka rivi pop sanan j<EFBFBD>lkeen
|
|||
|
|
if isequal(line4,-1)
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
if ~any(line4==',')
|
|||
|
|
% Rivin t<EFBFBD>ytyy sis<EFBFBD>lt<EFBFBD><EFBFBD> pilkku.
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
pointer = 1;
|
|||
|
|
while ~isequal(line4(pointer),',') %Tiedet<EFBFBD><EFBFBD>n, ett?pys<EFBFBD>htyy.
|
|||
|
|
pointer = pointer+1;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
line4 = line4(pointer+1:end); %pilkun j<EFBFBD>lkeinen osa
|
|||
|
|
nloci2 = rivinSisaltamienMjonojenLkm(line4);
|
|||
|
|
if (nloci2~=nloci)
|
|||
|
|
disp('Incorrect file format'); fclose(fid);
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
kunnossa = 1;
|
|||
|
|
fclose(fid);
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function [data, popnames] = lueGenePopDataPop(tiedostonNimi)
|
|||
|
|
% Data annetaan muodossa, jossa viimeinen sarake kertoo ryhm<EFBFBD>n.
|
|||
|
|
% popnames on kuten ennenkin.
|
|||
|
|
|
|||
|
|
fid = fopen(tiedostonNimi);
|
|||
|
|
line = fgetl(fid); %ensimm<EFBFBD>inen rivi
|
|||
|
|
line = fgetl(fid); %toinen rivi
|
|||
|
|
count = rivinSisaltamienMjonojenLkm(line);
|
|||
|
|
|
|||
|
|
line = fgetl(fid);
|
|||
|
|
lokusRiveja = 1;
|
|||
|
|
while (testaaPop(line)==0)
|
|||
|
|
lokusRiveja = lokusRiveja+1;
|
|||
|
|
line = fgetl(fid);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if lokusRiveja>1
|
|||
|
|
nloci = lokusRiveja;
|
|||
|
|
else
|
|||
|
|
nloci = count;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
popnames = cell(10,2);
|
|||
|
|
data = zeros(100, nloci+1);
|
|||
|
|
nimienLkm=0;
|
|||
|
|
ninds=0;
|
|||
|
|
poimiNimi=1;
|
|||
|
|
digitFormat = -1;
|
|||
|
|
while line ~= -1
|
|||
|
|
line = fgetl(fid);
|
|||
|
|
|
|||
|
|
if poimiNimi==1
|
|||
|
|
%Edellinen rivi oli 'pop'
|
|||
|
|
nimienLkm = nimienLkm+1;
|
|||
|
|
ninds = ninds+1;
|
|||
|
|
if nimienLkm>size(popnames,1);
|
|||
|
|
popnames = [popnames; cell(10,2)];
|
|||
|
|
end
|
|||
|
|
nimi = lueNimi(line);
|
|||
|
|
if digitFormat == -1
|
|||
|
|
digitFormat = selvitaDigitFormat(line);
|
|||
|
|
divider = 10^digitFormat;
|
|||
|
|
end
|
|||
|
|
popnames{nimienLkm, 1} = {nimi}; %N<EFBFBD>in se on greedyMix:iss<EFBFBD>kin?!?
|
|||
|
|
popnames{nimienLkm, 2} = ninds;
|
|||
|
|
poimiNimi=0;
|
|||
|
|
|
|||
|
|
data = addAlleles(data, ninds, line, divider);
|
|||
|
|
|
|||
|
|
elseif testaaPop(line)
|
|||
|
|
poimiNimi = 1;
|
|||
|
|
|
|||
|
|
elseif line ~= -1
|
|||
|
|
ninds = ninds+1;
|
|||
|
|
data = addAlleles(data, ninds, line, divider);
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
fclose(fid);
|
|||
|
|
data = data(1:ninds*2,:);
|
|||
|
|
popnames = popnames(1:nimienLkm,:);
|
|||
|
|
npops = size(popnames,1);
|
|||
|
|
ind = 1;
|
|||
|
|
for pop = 1:npops
|
|||
|
|
if pop<npops
|
|||
|
|
while ind<popnames{pop+1,2}
|
|||
|
|
data([ind*2-1 ind*2],end) = pop;
|
|||
|
|
ind = ind+1;
|
|||
|
|
end
|
|||
|
|
else
|
|||
|
|
while ind<=ninds
|
|||
|
|
data([ind*2-1 ind*2],end) = pop;
|
|||
|
|
ind = ind+1;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%-------------------------------------------------------
|
|||
|
|
|
|||
|
|
function nimi = lueNimi(line)
|
|||
|
|
%Palauttaa line:n alusta sen osan, joka on ennen pilkkua.
|
|||
|
|
n = 1;
|
|||
|
|
merkki = line(n);
|
|||
|
|
nimi = '';
|
|||
|
|
while ~isequal(merkki,',')
|
|||
|
|
nimi = [nimi merkki];
|
|||
|
|
n = n+1;
|
|||
|
|
merkki = line(n);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%-------------------------------------------------------
|
|||
|
|
|
|||
|
|
function df = selvitaDigitFormat(line)
|
|||
|
|
% line on ensimm<EFBFBD>inen pop-sanan j<EFBFBD>lkeinen rivi
|
|||
|
|
% Genepop-formaatissa olevasta datasta. funktio selvitt<EFBFBD><EFBFBD>
|
|||
|
|
% rivin muodon perusteella, ovatko datan alleelit annettu
|
|||
|
|
% 2 vai 3 numeron avulla.
|
|||
|
|
|
|||
|
|
n = 1;
|
|||
|
|
merkki = line(n);
|
|||
|
|
while ~isequal(merkki,',')
|
|||
|
|
n = n+1;
|
|||
|
|
merkki = line(n);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
while ~any(merkki == '0123456789');
|
|||
|
|
n = n+1;
|
|||
|
|
merkki = line(n);
|
|||
|
|
end
|
|||
|
|
numeroja = 0;
|
|||
|
|
while any(merkki == '0123456789');
|
|||
|
|
numeroja = numeroja+1;
|
|||
|
|
n = n+1;
|
|||
|
|
merkki = line(n);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
df = numeroja/2;
|
|||
|
|
|
|||
|
|
|
|||
|
|
%------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function count = rivinSisaltamienMjonojenLkm(line)
|
|||
|
|
% Palauttaa line:n sis<EFBFBD>lt<EFBFBD>mien mjonojen lukum<EFBFBD><EFBFBD>r<EFBFBD>n.
|
|||
|
|
% Mjonojen v<EFBFBD>liss?t<EFBFBD>ytyy olla v<EFBFBD>lily<EFBFBD>nti.
|
|||
|
|
count = 0;
|
|||
|
|
pit = length(line);
|
|||
|
|
tila = 0; %0, jos odotetaan v<EFBFBD>lily<EFBFBD>ntej? 1 jos odotetaan muita merkkej?
|
|||
|
|
for i=1:pit
|
|||
|
|
merkki = line(i);
|
|||
|
|
if (isspace(merkki) & tila==0)
|
|||
|
|
%Ei tehd?mit<EFBFBD><EFBFBD>n.
|
|||
|
|
elseif (isspace(merkki) & tila==1)
|
|||
|
|
tila = 0;
|
|||
|
|
elseif (~isspace(merkki) & tila==0)
|
|||
|
|
tila = 1;
|
|||
|
|
count = count+1;
|
|||
|
|
elseif (~isspace(merkki) & tila==1)
|
|||
|
|
%Ei tehd?mit<EFBFBD><EFBFBD>n
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%-------------------------------------------------------
|
|||
|
|
|
|||
|
|
function pal = testaaPop(rivi)
|
|||
|
|
% pal=1, mik<EFBFBD>li rivi alkaa jollain seuraavista
|
|||
|
|
% kirjainyhdistelmist? Pop, pop, POP. Kaikissa muissa
|
|||
|
|
% tapauksissa pal=0.
|
|||
|
|
|
|||
|
|
if length(rivi)<3
|
|||
|
|
pal = 0;
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
if (all(rivi(1:3)=='Pop') | ...
|
|||
|
|
all(rivi(1:3)=='pop') | ...
|
|||
|
|
all(rivi(1:3)=='POP'))
|
|||
|
|
pal = 1;
|
|||
|
|
return
|
|||
|
|
else
|
|||
|
|
pal = 0;
|
|||
|
|
return
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function data = addAlleles(data, ind, line, divider)
|
|||
|
|
% Lisaa BAPS-formaatissa olevaan datataulukkoon
|
|||
|
|
% yksil<EFBFBD><EFBFBD> ind vastaavat rivit. Yksil<EFBFBD>n alleelit
|
|||
|
|
% luetaan genepop-formaatissa olevasta rivist?
|
|||
|
|
% line. Jos data on 3 digit formaatissa on divider=1000.
|
|||
|
|
% Jos data on 2 digit formaatissa on divider=100.
|
|||
|
|
|
|||
|
|
nloci = size(data,2)-1;
|
|||
|
|
if size(data,1) < 2*ind
|
|||
|
|
data = [data; zeros(100,nloci+1)];
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
k=1;
|
|||
|
|
merkki=line(k);
|
|||
|
|
while ~isequal(merkki,',')
|
|||
|
|
k=k+1;
|
|||
|
|
merkki=line(k);
|
|||
|
|
end
|
|||
|
|
line = line(k+1:end);
|
|||
|
|
clear k; clear merkki;
|
|||
|
|
|
|||
|
|
alleeliTaulu = sscanf(line,'%d');
|
|||
|
|
|
|||
|
|
if length(alleeliTaulu)~=nloci
|
|||
|
|
disp('Incorrect data format.');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
for j=1:nloci
|
|||
|
|
ekaAlleeli = floor(alleeliTaulu(j)/divider);
|
|||
|
|
if ekaAlleeli==0 ekaAlleeli=-999; end;
|
|||
|
|
tokaAlleeli = rem(alleeliTaulu(j),divider);
|
|||
|
|
if tokaAlleeli==0 tokaAlleeli=-999; end
|
|||
|
|
|
|||
|
|
data(2*ind-1,j) = ekaAlleeli;
|
|||
|
|
data(2*ind,j) = tokaAlleeli;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
data(2*ind-1,end) = ind;
|
|||
|
|
data(2*ind,end) = ind;
|
|||
|
|
|
|||
|
|
%------------------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function popLogml = computePopulationLogml(pops, adjprior, priorTerm)
|
|||
|
|
% Palauttaa length(pops)*1 taulukon, jossa on laskettu korikohtaiset
|
|||
|
|
% logml:t koreille, jotka on m<EFBFBD><EFBFBD>ritelty pops-muuttujalla.
|
|||
|
|
|
|||
|
|
global COUNTS;
|
|||
|
|
global SUMCOUNTS;
|
|||
|
|
x = size(COUNTS,1);
|
|||
|
|
y = size(COUNTS,2);
|
|||
|
|
z = length(pops);
|
|||
|
|
|
|||
|
|
popLogml = ...
|
|||
|
|
squeeze(sum(sum(reshape(...
|
|||
|
|
gammaln(repmat(adjprior,[1 1 length(pops)]) + COUNTS(:,:,pops)) ...
|
|||
|
|
,[x y z]),1),2)) - sum(gammaln(1+SUMCOUNTS(pops,:)),2) - priorTerm;
|
|||
|
|
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function [muutokset, diffInCounts] = ...
|
|||
|
|
laskeMuutokset(ind, globalRows, data, adjprior, priorTerm)
|
|||
|
|
% Palauttaa npops*1 taulun, jossa i:s alkio kertoo, mik?olisi
|
|||
|
|
% muutos logml:ss? mik<EFBFBD>li yksil?ind siirret<EFBFBD><EFBFBD>n koriin i.
|
|||
|
|
% diffInCounts on poistettava COUNTS:in siivusta i1 ja lis<EFBFBD>tt<EFBFBD>v?
|
|||
|
|
% COUNTS:in siivuun i2, mik<EFBFBD>li muutos toteutetaan.
|
|||
|
|
|
|||
|
|
global COUNTS; global SUMCOUNTS;
|
|||
|
|
global PARTITION; global POP_LOGML;
|
|||
|
|
npops = size(COUNTS,3);
|
|||
|
|
muutokset = zeros(npops,1);
|
|||
|
|
|
|||
|
|
i1 = PARTITION(ind);
|
|||
|
|
i1_logml = POP_LOGML(i1);
|
|||
|
|
|
|||
|
|
rows = globalRows(ind,1):globalRows(ind,2);
|
|||
|
|
diffInCounts = computeDiffInCounts(rows, size(COUNTS,1), size(COUNTS,2), data);
|
|||
|
|
diffInSumCounts = sum(diffInCounts);
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1)-diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)-diffInSumCounts;
|
|||
|
|
new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm);
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1)+diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)+diffInSumCounts;
|
|||
|
|
|
|||
|
|
i2 = [1:i1-1 , i1+1:npops];
|
|||
|
|
i2_logml = POP_LOGML(i2);
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)+repmat(diffInSumCounts,[npops-1 1]);
|
|||
|
|
new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm);
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)-repmat(diffInSumCounts,[npops-1 1]);
|
|||
|
|
|
|||
|
|
muutokset(i2) = new_i1_logml - i1_logml ...
|
|||
|
|
+ new_i2_logml - i2_logml;
|
|||
|
|
|
|||
|
|
|
|||
|
|
%----------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function diffInCounts = computeDiffInCounts(rows, max_noalle, nloci, data)
|
|||
|
|
% Muodostaa max_noalle*nloci taulukon, jossa on niiden alleelien
|
|||
|
|
% lukum<EFBFBD><EFBFBD>r<EFBFBD>t (vastaavasti kuin COUNTS:issa), jotka ovat data:n
|
|||
|
|
% riveill?rows. rows pit<EFBFBD><EFBFBD> olla vaakavektori.
|
|||
|
|
|
|||
|
|
diffInCounts = zeros(max_noalle, nloci);
|
|||
|
|
for i=rows
|
|||
|
|
row = data(i,:);
|
|||
|
|
notEmpty = find(row>=0);
|
|||
|
|
|
|||
|
|
if length(notEmpty)>0
|
|||
|
|
diffInCounts(row(notEmpty) + (notEmpty-1)*max_noalle) = ...
|
|||
|
|
diffInCounts(row(notEmpty) + (notEmpty-1)*max_noalle) + 1;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
%-------------------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function updateGlobalVariables(ind, i2, diffInCounts, ...
|
|||
|
|
adjprior, priorTerm)
|
|||
|
|
% Suorittaa globaalien muuttujien muutokset, kun yksil?ind
|
|||
|
|
% on siirret<EFBFBD><EFBFBD>n koriin i2.
|
|||
|
|
|
|||
|
|
global PARTITION;
|
|||
|
|
global COUNTS;
|
|||
|
|
global SUMCOUNTS;
|
|||
|
|
global POP_LOGML;
|
|||
|
|
|
|||
|
|
i1 = PARTITION(ind);
|
|||
|
|
PARTITION(ind)=i2;
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1) - diffInCounts;
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2) + diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:) - sum(diffInCounts);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:) + sum(diffInCounts);
|
|||
|
|
|
|||
|
|
POP_LOGML([i1 i2]) = computePopulationLogml([i1 i2], adjprior, priorTerm);
|
|||
|
|
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
%--
|
|||
|
|
|
|||
|
|
%------------------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function [muutokset, diffInCounts] = laskeMuutokset2( ...
|
|||
|
|
i1, globalRows, data, adjprior, priorTerm);
|
|||
|
|
% Palauttaa npops*1 taulun, jossa i:s alkio kertoo, mik?olisi
|
|||
|
|
% muutos logml:ss? mik<EFBFBD>li korin i1 kaikki yksil<EFBFBD>t siirret<EFBFBD><EFBFBD>n
|
|||
|
|
% koriin i.
|
|||
|
|
|
|||
|
|
global COUNTS; global SUMCOUNTS;
|
|||
|
|
global PARTITION; global POP_LOGML;
|
|||
|
|
npops = size(COUNTS,3);
|
|||
|
|
muutokset = zeros(npops,1);
|
|||
|
|
|
|||
|
|
i1_logml = POP_LOGML(i1);
|
|||
|
|
|
|||
|
|
inds = find(PARTITION==i1);
|
|||
|
|
ninds = length(inds);
|
|||
|
|
|
|||
|
|
if ninds==0
|
|||
|
|
diffInCounts = zeros(size(COUNTS,1), size(COUNTS,2));
|
|||
|
|
return;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
rows = [];
|
|||
|
|
for i = 1:ninds
|
|||
|
|
ind = inds(i);
|
|||
|
|
lisa = globalRows(ind,1):globalRows(ind,2);
|
|||
|
|
rows = [rows; lisa'];
|
|||
|
|
%rows = [rows; globalRows{ind}'];
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
diffInCounts = computeDiffInCounts(rows', size(COUNTS,1), size(COUNTS,2), data);
|
|||
|
|
diffInSumCounts = sum(diffInCounts);
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1)-diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)-diffInSumCounts;
|
|||
|
|
new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm);
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1)+diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)+diffInSumCounts;
|
|||
|
|
|
|||
|
|
i2 = [1:i1-1 , i1+1:npops];
|
|||
|
|
i2_logml = POP_LOGML(i2);
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)+repmat(diffInSumCounts,[npops-1 1]);
|
|||
|
|
new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm);
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)-repmat(diffInSumCounts,[npops-1 1]);
|
|||
|
|
|
|||
|
|
muutokset(i2) = new_i1_logml - i1_logml ...
|
|||
|
|
+ new_i2_logml - i2_logml;
|
|||
|
|
|
|||
|
|
|
|||
|
|
%---------------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function updateGlobalVariables2( ...
|
|||
|
|
i1, i2, diffInCounts, adjprior, priorTerm);
|
|||
|
|
% Suorittaa globaalien muuttujien muutokset, kun kaikki
|
|||
|
|
% korissa i1 olevat yksil<EFBFBD>t siirret<EFBFBD><EFBFBD>n koriin i2.
|
|||
|
|
|
|||
|
|
global PARTITION;
|
|||
|
|
global COUNTS;
|
|||
|
|
global SUMCOUNTS;
|
|||
|
|
global POP_LOGML;
|
|||
|
|
|
|||
|
|
inds = find(PARTITION==i1);
|
|||
|
|
PARTITION(inds) = i2;
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1) - diffInCounts;
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2) + diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:) - sum(diffInCounts);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:) + sum(diffInCounts);
|
|||
|
|
|
|||
|
|
POP_LOGML(i1) = 0;
|
|||
|
|
POP_LOGML(i2) = computePopulationLogml(i2, adjprior, priorTerm);
|
|||
|
|
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
%----
|
|||
|
|
|
|||
|
|
function muutokset = laskeMuutokset3(T2, inds2, globalRows, ...
|
|||
|
|
data, adjprior, priorTerm, i1)
|
|||
|
|
% Palauttaa length(unique(T2))*npops taulun, jossa (i,j):s alkio
|
|||
|
|
% kertoo, mik?olisi muutos logml:ss? jos populaation i1 osapopulaatio
|
|||
|
|
% inds2(find(T2==i)) siirret<EFBFBD><EFBFBD>n koriin j.
|
|||
|
|
|
|||
|
|
global COUNTS; global SUMCOUNTS;
|
|||
|
|
global PARTITION; global POP_LOGML;
|
|||
|
|
npops = size(COUNTS,3);
|
|||
|
|
npops2 = length(unique(T2));
|
|||
|
|
muutokset = zeros(npops2, npops);
|
|||
|
|
|
|||
|
|
i1_logml = POP_LOGML(i1);
|
|||
|
|
for pop2 = 1:npops2
|
|||
|
|
inds = inds2(find(T2==pop2));
|
|||
|
|
ninds = length(inds);
|
|||
|
|
if ninds>0
|
|||
|
|
rows = [];
|
|||
|
|
for i = 1:ninds
|
|||
|
|
ind = inds(i);
|
|||
|
|
lisa = globalRows(ind,1):globalRows(ind,2);
|
|||
|
|
rows = [rows; lisa'];
|
|||
|
|
%rows = [rows; globalRows{ind}'];
|
|||
|
|
end
|
|||
|
|
diffInCounts = computeDiffInCounts(rows', size(COUNTS,1), size(COUNTS,2), data);
|
|||
|
|
diffInSumCounts = sum(diffInCounts);
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1)-diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)-diffInSumCounts;
|
|||
|
|
new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm);
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1)+diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)+diffInSumCounts;
|
|||
|
|
|
|||
|
|
i2 = [1:i1-1 , i1+1:npops];
|
|||
|
|
i2_logml = POP_LOGML(i2)';
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)+repmat(diffInSumCounts,[npops-1 1]);
|
|||
|
|
new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm)';
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)-repmat(diffInSumCounts,[npops-1 1]);
|
|||
|
|
|
|||
|
|
muutokset(pop2,i2) = new_i1_logml - i1_logml ...
|
|||
|
|
+ new_i2_logml - i2_logml;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%------------------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
function muutokset = laskeMuutokset5(inds, globalRows, data, adjprior, ...
|
|||
|
|
priorTerm, i1, i2)
|
|||
|
|
|
|||
|
|
% Palauttaa length(inds)*1 taulun, jossa i:s alkio kertoo, mik?olisi
|
|||
|
|
% muutos logml:ss? mik<EFBFBD>li yksil?i vaihtaisi koria i1:n ja i2:n v<EFBFBD>lill?
|
|||
|
|
|
|||
|
|
global COUNTS; global SUMCOUNTS;
|
|||
|
|
global PARTITION; global POP_LOGML;
|
|||
|
|
|
|||
|
|
ninds = length(inds);
|
|||
|
|
muutokset = zeros(ninds,1);
|
|||
|
|
|
|||
|
|
i1_logml = POP_LOGML(i1);
|
|||
|
|
i2_logml = POP_LOGML(i2);
|
|||
|
|
|
|||
|
|
for i = 1:ninds
|
|||
|
|
ind = inds(i);
|
|||
|
|
if PARTITION(ind)==i1
|
|||
|
|
pop1 = i1; %mist?
|
|||
|
|
pop2 = i2; %mihin
|
|||
|
|
else
|
|||
|
|
pop1 = i2;
|
|||
|
|
pop2 = i1;
|
|||
|
|
end
|
|||
|
|
rows = globalRows(ind,1):globalRows(ind,2);
|
|||
|
|
diffInCounts = computeDiffInCounts(rows, size(COUNTS,1), size(COUNTS,2), data);
|
|||
|
|
diffInSumCounts = sum(diffInCounts);
|
|||
|
|
|
|||
|
|
COUNTS(:,:,pop1) = COUNTS(:,:,pop1)-diffInCounts;
|
|||
|
|
SUMCOUNTS(pop1,:) = SUMCOUNTS(pop1,:)-diffInSumCounts;
|
|||
|
|
COUNTS(:,:,pop2) = COUNTS(:,:,pop2)+diffInCounts;
|
|||
|
|
SUMCOUNTS(pop2,:) = SUMCOUNTS(pop2,:)+diffInSumCounts;
|
|||
|
|
|
|||
|
|
new_logmls = computePopulationLogml([i1 i2], adjprior, priorTerm);
|
|||
|
|
muutokset(i) = sum(new_logmls);
|
|||
|
|
|
|||
|
|
COUNTS(:,:,pop1) = COUNTS(:,:,pop1)+diffInCounts;
|
|||
|
|
SUMCOUNTS(pop1,:) = SUMCOUNTS(pop1,:)+diffInSumCounts;
|
|||
|
|
COUNTS(:,:,pop2) = COUNTS(:,:,pop2)-diffInCounts;
|
|||
|
|
SUMCOUNTS(pop2,:) = SUMCOUNTS(pop2,:)-diffInSumCounts;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
muutokset = muutokset - i1_logml - i2_logml;
|
|||
|
|
|
|||
|
|
%------------------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function updateGlobalVariables3(muuttuvat, diffInCounts, ...
|
|||
|
|
adjprior, priorTerm, i2);
|
|||
|
|
% Suorittaa globaalien muuttujien p<EFBFBD>ivitykset, kun yksil<EFBFBD>t 'muuttuvat'
|
|||
|
|
% siirret<EFBFBD><EFBFBD>n koriin i2. Ennen siirtoa yksil<EFBFBD>iden on kuuluttava samaan
|
|||
|
|
% koriin.
|
|||
|
|
|
|||
|
|
global PARTITION;
|
|||
|
|
global COUNTS;
|
|||
|
|
global SUMCOUNTS;
|
|||
|
|
global POP_LOGML;
|
|||
|
|
|
|||
|
|
i1 = PARTITION(muuttuvat(1));
|
|||
|
|
PARTITION(muuttuvat) = i2;
|
|||
|
|
|
|||
|
|
COUNTS(:,:,i1) = COUNTS(:,:,i1) - diffInCounts;
|
|||
|
|
COUNTS(:,:,i2) = COUNTS(:,:,i2) + diffInCounts;
|
|||
|
|
SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:) - sum(diffInCounts);
|
|||
|
|
SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:) + sum(diffInCounts);
|
|||
|
|
|
|||
|
|
POP_LOGML([i1 i2]) = computePopulationLogml([i1 i2], adjprior, priorTerm);
|
|||
|
|
|
|||
|
|
|
|||
|
|
%----------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function dist2 = laskeOsaDist(inds2, dist, ninds)
|
|||
|
|
% Muodostaa dist vektorista osavektorin, joka sis<EFBFBD>lt<EFBFBD><EFBFBD> yksil<EFBFBD>iden inds2
|
|||
|
|
% v<EFBFBD>liset et<EFBFBD>isyydet. ninds=kaikkien yksil<EFBFBD>iden lukum<EFBFBD><EFBFBD>r?
|
|||
|
|
|
|||
|
|
ninds2 = length(inds2);
|
|||
|
|
apu = zeros(nchoosek(ninds2,2),2);
|
|||
|
|
rivi = 1;
|
|||
|
|
for i=1:ninds2-1
|
|||
|
|
for j=i+1:ninds2
|
|||
|
|
apu(rivi, 1) = inds2(i);
|
|||
|
|
apu(rivi, 2) = inds2(j);
|
|||
|
|
rivi = rivi+1;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
apu = (apu(:,1)-1).*ninds - apu(:,1) ./ 2 .* (apu(:,1)-1) + (apu(:,2)-apu(:,1));
|
|||
|
|
dist2 = dist(apu);
|
|||
|
|
|
|||
|
|
|
|||
|
|
%-----------------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function npops = poistaTyhjatPopulaatiot(npops)
|
|||
|
|
% Poistaa tyhjentyneet populaatiot COUNTS:ista ja
|
|||
|
|
% SUMCOUNTS:ista. P<EFBFBD>ivitt<EFBFBD><EFBFBD> npops:in ja PARTITION:in.
|
|||
|
|
|
|||
|
|
global COUNTS;
|
|||
|
|
global SUMCOUNTS;
|
|||
|
|
global PARTITION;
|
|||
|
|
|
|||
|
|
notEmpty = find(any(SUMCOUNTS,2));
|
|||
|
|
COUNTS = COUNTS(:,:,notEmpty);
|
|||
|
|
SUMCOUNTS = SUMCOUNTS(notEmpty,:);
|
|||
|
|
|
|||
|
|
for n=1:length(notEmpty)
|
|||
|
|
apu = find(PARTITION==notEmpty(n));
|
|||
|
|
PARTITION(apu)=n;
|
|||
|
|
end
|
|||
|
|
npops = length(notEmpty);
|
|||
|
|
|
|||
|
|
|
|||
|
|
%-----------------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function popnames = initPopNames(nameFile)
|
|||
|
|
|
|||
|
|
fid = fopen(nameFile);
|
|||
|
|
if fid == -1
|
|||
|
|
%File didn't exist
|
|||
|
|
msgbox('Loading of the population names was unsuccessful', ...
|
|||
|
|
'Error', 'error');
|
|||
|
|
return;
|
|||
|
|
end;
|
|||
|
|
line = fgetl(fid);
|
|||
|
|
counter = 1;
|
|||
|
|
while (line ~= -1) & ~isempty(line)
|
|||
|
|
names{counter} = line;
|
|||
|
|
line = fgetl(fid);
|
|||
|
|
counter = counter + 1;
|
|||
|
|
end;
|
|||
|
|
fclose(fid);
|
|||
|
|
|
|||
|
|
popnames = cell(length(names), 2);
|
|||
|
|
for i = 1:length(names)
|
|||
|
|
popnames{i,1} = names(i);
|
|||
|
|
popnames{i,2} = 0;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
%-------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function [popnames2, rowsFromInd] = findOutRowsFromInd(popnames, rows)
|
|||
|
|
|
|||
|
|
ploidisuus = questdlg('Specify the type of individuals in the data: ',...
|
|||
|
|
'Individual type?', 'Haploid', 'Diploid', 'Tetraploid', ...
|
|||
|
|
'Diploid');
|
|||
|
|
|
|||
|
|
switch ploidisuus
|
|||
|
|
case 'Haploid'
|
|||
|
|
rowsFromInd = 1;
|
|||
|
|
case 'Diploid'
|
|||
|
|
rowsFromInd = 2;
|
|||
|
|
case 'Tetraploid'
|
|||
|
|
rowsFromInd = 4;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if ~isempty(popnames)
|
|||
|
|
for i = 1:size(rows,1)
|
|||
|
|
popnames2{i,1} = popnames{i,1};
|
|||
|
|
rivi = rows(i,1):rows(i,2);
|
|||
|
|
popnames2{i,2} = (rivi(rowsFromInd))/rowsFromInd;
|
|||
|
|
end
|
|||
|
|
else
|
|||
|
|
popnames2 = [];
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
function fiksaaPartitioYksiloTasolle(rows, rowsFromInd)
|
|||
|
|
|
|||
|
|
global PARTITION;
|
|||
|
|
totalRows = 0;
|
|||
|
|
for ind = 1:size(rows,1)
|
|||
|
|
totalRows = totalRows + (rows(ind,2)-rows(ind,1)+1);
|
|||
|
|
end
|
|||
|
|
partitio2 = zeros(totalRows/rowsFromInd,1);
|
|||
|
|
|
|||
|
|
for ind = 1:size(rows,1)
|
|||
|
|
kaikkiRivit = rows(ind,1):rows(ind,2);
|
|||
|
|
for riviNumero = rowsFromInd:rowsFromInd:length(kaikkiRivit)
|
|||
|
|
%for riviNumero = rowsFromInd:rowsFromInd:length(rows{ind})
|
|||
|
|
%rivi = rows{ind}(riviNumero);
|
|||
|
|
rivi = kaikkiRivit(riviNumero);
|
|||
|
|
partitio2(rivi/rowsFromInd) = PARTITION(ind);
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
PARTITION = partitio2;
|
|||
|
|
|
|||
|
|
%---------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function newline = takeLine(description,width)
|
|||
|
|
%Returns one line from the description: line ends to the first
|
|||
|
|
%space after width:th mark.
|
|||
|
|
newLine = description(1:width);
|
|||
|
|
n = width+1;
|
|||
|
|
while ~isspace(description(n)) & n<length(description)
|
|||
|
|
n = n+1;
|
|||
|
|
end;
|
|||
|
|
newline = description(1:n);
|
|||
|
|
|
|||
|
|
|
|||
|
|
%-------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function changesInLogml=writeMixtureInfoPop(logml, rows, data, adjprior, ...
|
|||
|
|
priorTerm, outPutFile, inputFile, partitionSummary, popnames)
|
|||
|
|
|
|||
|
|
global PARTITION;
|
|||
|
|
global COUNTS;
|
|||
|
|
global SUMCOUNTS;
|
|||
|
|
global LOGDIFF;
|
|||
|
|
ninds = size(rows,1);
|
|||
|
|
npops = size(COUNTS,3);
|
|||
|
|
names = (size(popnames,1) == ninds); %Tarkistetaan ett?nimet viittaavat yksil<EFBFBD>ihin
|
|||
|
|
|
|||
|
|
if length(outPutFile)>0
|
|||
|
|
fid = fopen(outPutFile,'a');
|
|||
|
|
else
|
|||
|
|
fid = -1;
|
|||
|
|
diary('baps4_output.baps'); % save in text anyway.
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
dispLine;
|
|||
|
|
disp('RESULTS OF GROUP LEVEL MIXTURE ANALYSIS:');
|
|||
|
|
disp(['Data file: ' inputFile]);
|
|||
|
|
disp(['Number of clustered groups: ' ownNum2Str(ninds)]);
|
|||
|
|
disp(['Number of clusters in optimal partition: ' ownNum2Str(npops)]);
|
|||
|
|
disp(['Log(marginal likelihood) of optimal partition: ' ownNum2Str(logml)]);
|
|||
|
|
disp(' ');
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid,'%s \n', ['RESULTS OF GROUP LEVEL MIXTURE ANALYSIS:']); fprintf(fid,'\n');
|
|||
|
|
fprintf(fid,'%s \n', ['Data file: ' inputFile]); fprintf(fid,'\n');
|
|||
|
|
fprintf(fid,'%s \n', ['Number of clustered groups: ' ownNum2Str(ninds)]); fprintf(fid,'\n');
|
|||
|
|
fprintf(fid,'%s \n', ['Number of clusters in optimal partition: ' ownNum2Str(npops)]); fprintf(fid,'\n');
|
|||
|
|
fprintf(fid,'%s \n', ['Log(marginal likelihood) of optimal partition: ' ownNum2Str(logml)]); fprintf(fid,'\n');
|
|||
|
|
fprintf(fid,'\n');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
cluster_count = length(unique(PARTITION));
|
|||
|
|
disp(['Best Partition: ']);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid,'%s \n',['Best Partition: ']); fprintf(fid,'\n');
|
|||
|
|
end
|
|||
|
|
for m=1:cluster_count
|
|||
|
|
indsInM = find(PARTITION==m);
|
|||
|
|
length_of_beginning = 11 + floor(log10(m));
|
|||
|
|
cluster_size = length(indsInM);
|
|||
|
|
|
|||
|
|
if names
|
|||
|
|
text = ['Cluster ' num2str(m) ': {' char(popnames{indsInM(1)})];
|
|||
|
|
for k = 2:cluster_size
|
|||
|
|
text = [text ', ' char(popnames{indsInM(k)})];
|
|||
|
|
end;
|
|||
|
|
else
|
|||
|
|
text = ['Cluster ' num2str(m) ': {' num2str(indsInM(1))];
|
|||
|
|
for k = 2:cluster_size
|
|||
|
|
text = [text ', ' num2str(indsInM(k))];
|
|||
|
|
end;
|
|||
|
|
end
|
|||
|
|
text = [text '}'];
|
|||
|
|
while length(text)>58
|
|||
|
|
%Take one line and display it.
|
|||
|
|
new_line = takeLine(text,58);
|
|||
|
|
text = text(length(new_line)+1:end);
|
|||
|
|
disp(new_line);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid,'%s \n',[new_line]);
|
|||
|
|
fprintf(fid,'\n');
|
|||
|
|
end
|
|||
|
|
if length(text)>0
|
|||
|
|
text = [blanks(length_of_beginning) text];
|
|||
|
|
else
|
|||
|
|
text = [];
|
|||
|
|
end;
|
|||
|
|
end;
|
|||
|
|
if ~isempty(text)
|
|||
|
|
disp(text);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid,'%s \n',[text]);
|
|||
|
|
fprintf(fid,'\n');
|
|||
|
|
end
|
|||
|
|
end;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if npops > 1
|
|||
|
|
disp(' ');
|
|||
|
|
disp(' ');
|
|||
|
|
disp('Changes in log(marginal likelihood) if group i is moved to cluster j:');
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [' ']); %fprintf(fid, '\n');
|
|||
|
|
fprintf(fid, '%s \n', [' ']); %fprintf(fid, '\n');
|
|||
|
|
fprintf(fid, '%s \n', ['Changes in log(marginal likelihood) if group i is moved to cluster j:']); %fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if names
|
|||
|
|
nameSizes = zeros(ninds,1);
|
|||
|
|
for i = 1:ninds
|
|||
|
|
nimi = char(popnames{i});
|
|||
|
|
nameSizes(i) = length(nimi);
|
|||
|
|
end
|
|||
|
|
maxSize = max(nameSizes);
|
|||
|
|
maxSize = max(maxSize, 5);
|
|||
|
|
erotus = maxSize - 5;
|
|||
|
|
alku = blanks(erotus);
|
|||
|
|
ekarivi = [alku 'group' blanks(6+erotus)];
|
|||
|
|
else
|
|||
|
|
ekarivi = 'group ';
|
|||
|
|
end
|
|||
|
|
for i = 1:cluster_count
|
|||
|
|
ekarivi = [ekarivi ownNum2Str(i) blanks(8-floor(log10(i)))];
|
|||
|
|
end
|
|||
|
|
disp(ekarivi);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [ekarivi]); %fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
changesInLogml = LOGDIFF';
|
|||
|
|
for ind = 1:ninds
|
|||
|
|
%[muutokset, diffInCounts] = laskeMuutokset(ind, rows, data, ...
|
|||
|
|
% adjprior, priorTerm);
|
|||
|
|
muutokset = changesInLogml(:,ind);
|
|||
|
|
if names
|
|||
|
|
nimi = char(popnames{ind});
|
|||
|
|
rivi = [blanks(maxSize - length(nimi)) nimi ':'];
|
|||
|
|
else
|
|||
|
|
rivi = [blanks(4-floor(log10(ind))) ownNum2Str(ind) ':'];
|
|||
|
|
end
|
|||
|
|
for j = 1:npops
|
|||
|
|
rivi = [rivi ' ' logml2String(omaRound(muutokset(j)))];
|
|||
|
|
end
|
|||
|
|
disp(rivi);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [rivi]); fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
disp(' '); disp(' ');
|
|||
|
|
disp('KL-divergence matrix in PHYLIP format:');
|
|||
|
|
dist_mat = zeros(npops, npops);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [' ']); %fprintf(fid, '\n');
|
|||
|
|
fprintf(fid, '%s \n', [' ']); %fprintf(fid, '\n');
|
|||
|
|
fprintf(fid, '%s \n', ['KL-divergence matrix in PHYLIP format:']); %fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
maxnoalle = size(COUNTS,1);
|
|||
|
|
nloci = size(COUNTS,2);
|
|||
|
|
d = zeros(maxnoalle, nloci, npops);
|
|||
|
|
prior = adjprior;
|
|||
|
|
prior(find(prior==1))=0;
|
|||
|
|
nollia = find(all(prior==0)); %Lokukset, joissa oli havaittu vain yht?alleelia.
|
|||
|
|
prior(1,nollia)=1;
|
|||
|
|
for pop1 = 1:npops
|
|||
|
|
d(:,:,pop1) = (squeeze(COUNTS(:,:,pop1))+prior) ./ repmat(sum(squeeze(COUNTS(:,:,pop1))+prior),maxnoalle,1);
|
|||
|
|
%dist1(pop1) = (squeeze(COUNTS(:,:,pop1))+adjprior) ./ repmat((SUMCOUNTS(pop1,:)+adjprior), maxnoalle, 1);
|
|||
|
|
end
|
|||
|
|
% ekarivi = blanks(7);
|
|||
|
|
% for pop = 1:npops
|
|||
|
|
% ekarivi = [ekarivi num2str(pop) blanks(7-floor(log10(pop)))];
|
|||
|
|
% end
|
|||
|
|
ekarivi = num2str(npops);
|
|||
|
|
disp(ekarivi);
|
|||
|
|
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [ekarivi]); %fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
for pop1 = 1:npops
|
|||
|
|
rivi = [blanks(2-floor(log10(pop1))) num2str(pop1) ' '];
|
|||
|
|
for pop2 = 1:pop1-1
|
|||
|
|
dist1 = d(:,:,pop1); dist2 = d(:,:,pop2);
|
|||
|
|
div12 = sum(sum(dist1.*log2((dist1+10^-10) ./ (dist2+10^-10))))/nloci;
|
|||
|
|
div21 = sum(sum(dist2.*log2((dist2+10^-10) ./ (dist1+10^-10))))/nloci;
|
|||
|
|
div = (div12+div21)/2;
|
|||
|
|
% rivi = [rivi kldiv2str(div) ' '];
|
|||
|
|
dist_mat(pop1,pop2) = div;
|
|||
|
|
end
|
|||
|
|
% disp(rivi);
|
|||
|
|
% if (fid ~= -1)
|
|||
|
|
% fprintf(fid, '%s \n', [rivi]); fprintf(fid, '\n');
|
|||
|
|
% end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
else
|
|||
|
|
changesInLogml = [];
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
dist_mat = dist_mat + dist_mat'; % make it symmetric
|
|||
|
|
for pop1 = 1:npops
|
|||
|
|
rivi = ['Cluster_' num2str(pop1) ' '];
|
|||
|
|
for pop2 = 1:npops
|
|||
|
|
rivi = [rivi kldiv2str(dist_mat(pop1,pop2)) ' '];
|
|||
|
|
end
|
|||
|
|
disp(rivi);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [rivi]); %fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
disp(' ');
|
|||
|
|
disp(' ');
|
|||
|
|
disp('List of sizes of 10 best visited partitions and corresponding log(ml) values');
|
|||
|
|
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n');
|
|||
|
|
fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n');
|
|||
|
|
fprintf(fid, '%s \n', ['List of sizes of 10 best visited partitions and corresponding log(ml) values']); fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
partitionSummary = sortrows(partitionSummary,2);
|
|||
|
|
partitionSummary = partitionSummary(size(partitionSummary,1):-1:1 , :);
|
|||
|
|
partitionSummary = partitionSummary(find(partitionSummary(:,2)>-1e49),:);
|
|||
|
|
if size(partitionSummary,1)>10
|
|||
|
|
vikaPartitio = 10;
|
|||
|
|
else
|
|||
|
|
vikaPartitio = size(partitionSummary,1);
|
|||
|
|
end
|
|||
|
|
for part = 1:vikaPartitio
|
|||
|
|
line = [num2str(partitionSummary(part,1)) ' ' num2str(partitionSummary(part,2))];
|
|||
|
|
disp(line);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [line]); fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if ~fixedK
|
|||
|
|
|
|||
|
|
disp(' ');
|
|||
|
|
disp(' ');
|
|||
|
|
disp('Probabilities for number of clusters');
|
|||
|
|
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n');
|
|||
|
|
fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n');
|
|||
|
|
fprintf(fid, '%s \n', ['Probabilities for number of clusters']); fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
npopsTaulu = unique(partitionSummary(:,1));
|
|||
|
|
len = length(npopsTaulu);
|
|||
|
|
probs = zeros(len,1);
|
|||
|
|
partitionSummary(:,2) = partitionSummary(:,2)-max(partitionSummary(:,2));
|
|||
|
|
sumtn = sum(exp(partitionSummary(:,2)));
|
|||
|
|
for i=1:len
|
|||
|
|
npopstn = sum(exp(partitionSummary(find(partitionSummary(:,1)==npopsTaulu(i)),2)));
|
|||
|
|
probs(i) = npopstn / sumtn;
|
|||
|
|
end
|
|||
|
|
for i=1:len
|
|||
|
|
if probs(i)>1e-5
|
|||
|
|
line = [num2str(npopsTaulu(i)) ' ' num2str(probs(i))];
|
|||
|
|
disp(line);
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fprintf(fid, '%s \n', [line]); fprintf(fid, '\n');
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
if (fid ~= -1)
|
|||
|
|
fclose(fid);
|
|||
|
|
else
|
|||
|
|
diary off
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
%---------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function dispLine;
|
|||
|
|
disp('---------------------------------------------------');
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------
|
|||
|
|
|
|||
|
|
function num2 = omaRound(num)
|
|||
|
|
% Py<EFBFBD>rist<EFBFBD><EFBFBD> luvun num 1 desimaalin tarkkuuteen
|
|||
|
|
num = num*10;
|
|||
|
|
num = round(num);
|
|||
|
|
num2 = num/10;
|
|||
|
|
|
|||
|
|
%---------------------------------------------------------
|
|||
|
|
|
|||
|
|
function digit = palautaYks(num,yks)
|
|||
|
|
% palauttaa luvun num 10^yks termin kertoimen
|
|||
|
|
% string:in?
|
|||
|
|
% yks t<EFBFBD>ytyy olla kokonaisluku, joka on
|
|||
|
|
% v<EFBFBD>hint<EFBFBD><EFBFBD>n -1:n suuruinen. Pienemmill?
|
|||
|
|
% luvuilla tapahtuu jokin py<EFBFBD>ristysvirhe.
|
|||
|
|
|
|||
|
|
if yks>=0
|
|||
|
|
digit = rem(num, 10^(yks+1));
|
|||
|
|
digit = floor(digit/(10^yks));
|
|||
|
|
else
|
|||
|
|
digit = num*10;
|
|||
|
|
digit = floor(rem(digit,10));
|
|||
|
|
end
|
|||
|
|
digit = num2str(digit);
|
|||
|
|
|
|||
|
|
|
|||
|
|
function mjono = kldiv2str(div)
|
|||
|
|
mjono = ' ';
|
|||
|
|
if abs(div)<100
|
|||
|
|
%Ei tarvita e-muotoa
|
|||
|
|
mjono(6) = num2str(rem(floor(div*1000),10));
|
|||
|
|
mjono(5) = num2str(rem(floor(div*100),10));
|
|||
|
|
mjono(4) = num2str(rem(floor(div*10),10));
|
|||
|
|
mjono(3) = '.';
|
|||
|
|
mjono(2) = num2str(rem(floor(div),10));
|
|||
|
|
arvo = rem(floor(div/10),10);
|
|||
|
|
if arvo>0
|
|||
|
|
mjono(1) = num2str(arvo);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
else
|
|||
|
|
suurinYks = floor(log10(div));
|
|||
|
|
mjono(6) = num2str(suurinYks);
|
|||
|
|
mjono(5) = 'e';
|
|||
|
|
mjono(4) = palautaYks(abs(div),suurinYks-1);
|
|||
|
|
mjono(3) = '.';
|
|||
|
|
mjono(2) = palautaYks(abs(div),suurinYks);
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
|
|||
|
|
%-----------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function ninds = testaaOnkoKunnollinenBapsData(data)
|
|||
|
|
%Tarkastaa onko viimeisess?sarakkeessa kaikki
|
|||
|
|
%luvut 1,2,...,n johonkin n:<EFBFBD><EFBFBD>n asti.
|
|||
|
|
%Tarkastaa lis<EFBFBD>ksi, ett?on v<EFBFBD>hint<EFBFBD><EFBFBD>n 2 saraketta.
|
|||
|
|
if size(data,1)<2
|
|||
|
|
ninds = 0; return;
|
|||
|
|
end
|
|||
|
|
lastCol = data(:,end);
|
|||
|
|
ninds = max(lastCol);
|
|||
|
|
if ~isequal((1:ninds)',unique(lastCol))
|
|||
|
|
ninds = 0; return;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
%Seuraavat kolme funktiota liittyvat alkupartition muodostamiseen.
|
|||
|
|
|
|||
|
|
function initial_partition=admixture_initialization(data_matrix,nclusters, Z)
|
|||
|
|
|
|||
|
|
size_data=size(data_matrix);
|
|||
|
|
nloci=size_data(2)-1;
|
|||
|
|
n=max(data_matrix(:,end));
|
|||
|
|
T=cluster_own(Z,nclusters);
|
|||
|
|
initial_partition=zeros(size_data(1),1);
|
|||
|
|
for i=1:n
|
|||
|
|
kori=T(i);
|
|||
|
|
here=find(data_matrix(:,end)==i);
|
|||
|
|
for j=1:length(here)
|
|||
|
|
initial_partition(here(j),1)=kori;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
function T = cluster_own(Z,nclust)
|
|||
|
|
true=logical(1);
|
|||
|
|
false=logical(0);
|
|||
|
|
maxclust = nclust;
|
|||
|
|
% Start of algorithm
|
|||
|
|
m = size(Z,1)+1;
|
|||
|
|
T = zeros(m,1);
|
|||
|
|
% maximum number of clusters based on inconsistency
|
|||
|
|
if m <= maxclust
|
|||
|
|
T = (1:m)';
|
|||
|
|
elseif maxclust==1
|
|||
|
|
T = ones(m,1);
|
|||
|
|
else
|
|||
|
|
clsnum = 1;
|
|||
|
|
for k = (m-maxclust+1):(m-1)
|
|||
|
|
i = Z(k,1); % left tree
|
|||
|
|
if i <= m % original node, no leafs
|
|||
|
|
T(i) = clsnum;
|
|||
|
|
clsnum = clsnum + 1;
|
|||
|
|
elseif i < (2*m-maxclust+1) % created before cutoff, search down the tree
|
|||
|
|
T = clusternum(Z, T, i-m, clsnum);
|
|||
|
|
clsnum = clsnum + 1;
|
|||
|
|
end
|
|||
|
|
i = Z(k,2); % right tree
|
|||
|
|
if i <= m % original node, no leafs
|
|||
|
|
T(i) = clsnum;
|
|||
|
|
clsnum = clsnum + 1;
|
|||
|
|
elseif i < (2*m-maxclust+1) % created before cutoff, search down the tree
|
|||
|
|
T = clusternum(Z, T, i-m, clsnum);
|
|||
|
|
clsnum = clsnum + 1;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
function T = clusternum(X, T, k, c)
|
|||
|
|
m = size(X,1)+1;
|
|||
|
|
while(~isempty(k))
|
|||
|
|
% Get the children of nodes at this level
|
|||
|
|
children = X(k,1:2);
|
|||
|
|
children = children(:);
|
|||
|
|
|
|||
|
|
% Assign this node number to leaf children
|
|||
|
|
t = (children<=m);
|
|||
|
|
T(children(t)) = c;
|
|||
|
|
|
|||
|
|
% Move to next level
|
|||
|
|
k = children(~t) - m;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
function [sumcounts, counts, logml] = ...
|
|||
|
|
initialCounts(partition, data, npops, rows, noalle, adjprior)
|
|||
|
|
|
|||
|
|
nloci=size(data,2);
|
|||
|
|
ninds = size(rows, 1);
|
|||
|
|
|
|||
|
|
%koot = rows(:,1) - rows(:,2) + 1;
|
|||
|
|
%maxSize = max(koot);
|
|||
|
|
|
|||
|
|
counts = zeros(max(noalle),nloci,npops);
|
|||
|
|
sumcounts = zeros(npops,nloci);
|
|||
|
|
for i=1:npops
|
|||
|
|
for j=1:nloci
|
|||
|
|
havainnotLokuksessa = find(partition==i & data(:,j)>=0);
|
|||
|
|
sumcounts(i,j) = length(havainnotLokuksessa);
|
|||
|
|
for k=1:noalle(j)
|
|||
|
|
alleleCode = k;
|
|||
|
|
N_ijk = length(find(data(havainnotLokuksessa,j)==alleleCode));
|
|||
|
|
counts(k,j,i) = N_ijk;
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%initializeGammaln(ninds, maxSize, max(noalle));
|
|||
|
|
|
|||
|
|
logml = laskeLoggis(counts, sumcounts, adjprior);
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
|
|||
|
|
function [partitionSummary, added] = addToSummary(logml, partitionSummary, worstIndex)
|
|||
|
|
% Tiedet<EFBFBD><EFBFBD>n, ett?annettu logml on isompi kuin huonoin arvo
|
|||
|
|
% partitionSummary taulukossa. Jos partitionSummary:ss?ei viel?ole
|
|||
|
|
% annettua logml arvoa, niin lis<EFBFBD>t<EFBFBD><EFBFBD>n worstIndex:in kohtaan uusi logml ja
|
|||
|
|
% nykyist?partitiota vastaava nclusters:in arvo. Muutoin ei tehd?mit<EFBFBD><EFBFBD>n.
|
|||
|
|
|
|||
|
|
apu = find(abs(partitionSummary(:,2)-logml)<1e-5);
|
|||
|
|
if isempty(apu)
|
|||
|
|
% Nyt l<EFBFBD>ydetty partitio ei ole viel?kirjattuna summaryyn.
|
|||
|
|
global PARTITION;
|
|||
|
|
npops = length(unique(PARTITION));
|
|||
|
|
partitionSummary(worstIndex,1) = npops;
|
|||
|
|
partitionSummary(worstIndex,2) = logml;
|
|||
|
|
added = 1;
|
|||
|
|
else
|
|||
|
|
added = 0;
|
|||
|
|
end
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
function inds = returnInOrder(inds, pop, globalRows, data, ...
|
|||
|
|
adjprior, priorTerm)
|
|||
|
|
% Palauttaa yksil<EFBFBD>t j<EFBFBD>rjestyksess?siten, ett?ensimm<EFBFBD>isen?on
|
|||
|
|
% se, jonka poistaminen populaatiosta pop nostaisi logml:n
|
|||
|
|
% arvoa eniten.
|
|||
|
|
|
|||
|
|
global COUNTS; global SUMCOUNTS;
|
|||
|
|
ninds = length(inds);
|
|||
|
|
apuTaulu = [inds, zeros(ninds,1)];
|
|||
|
|
|
|||
|
|
for i=1:ninds
|
|||
|
|
ind =inds(i);
|
|||
|
|
rows = globalRows(i,1):globalRows(i,2);
|
|||
|
|
diffInCounts = computeDiffInCounts(rows, size(COUNTS,1), size(COUNTS,2), data);
|
|||
|
|
diffInSumCounts = sum(diffInCounts);
|
|||
|
|
|
|||
|
|
COUNTS(:,:,pop) = COUNTS(:,:,pop)-diffInCounts;
|
|||
|
|
SUMCOUNTS(pop,:) = SUMCOUNTS(pop,:)-diffInSumCounts;
|
|||
|
|
apuTaulu(i, 2) = computePopulationLogml(pop, adjprior, priorTerm);
|
|||
|
|
COUNTS(:,:,pop) = COUNTS(:,:,pop)+diffInCounts;
|
|||
|
|
SUMCOUNTS(pop,:) = SUMCOUNTS(pop,:)+diffInSumCounts;
|
|||
|
|
end
|
|||
|
|
apuTaulu = sortrows(apuTaulu,2);
|
|||
|
|
inds = apuTaulu(ninds:-1:1,1);
|
|||
|
|
|
|||
|
|
%--------------------------------------------------------------------------
|
|||
|
|
|
|||
|
|
function [emptyPop, pops] = findEmptyPop(npops)
|
|||
|
|
% Palauttaa ensimm<EFBFBD>isen tyhj<EFBFBD>n populaation indeksin. Jos tyhji?
|
|||
|
|
% populaatioita ei ole, palauttaa -1:n.
|
|||
|
|
|
|||
|
|
global PARTITION;
|
|||
|
|
pops = unique(PARTITION)';
|
|||
|
|
if (length(pops) ==npops)
|
|||
|
|
emptyPop = -1;
|
|||
|
|
else
|
|||
|
|
popDiff = diff([0 pops npops+1]);
|
|||
|
|
emptyPop = min(find(popDiff > 1));
|
|||
|
|
end
|