From 301842723772985e29c3ebd21fd17be030ca098c Mon Sep 17 00:00:00 2001 From: Waldir Leoncio Date: Fri, 31 Jul 2020 13:59:11 +0200 Subject: [PATCH] Fixed linkage() --- R/linkage.R | 50 +++++++++++++++++++++++++++++++++++--------------- 1 file changed, 35 insertions(+), 15 deletions(-) diff --git a/R/linkage.R b/R/linkage.R index 80d6b30..ccaf9b5 100644 --- a/R/linkage.R +++ b/R/linkage.R @@ -4,10 +4,14 @@ #' linkage algorithm. The input Y is a distance matrix such as is generated by #' PDIST. Y may also be a more general dissimilarity matrix conforming to the #' output format of PDIST. -#' @param Y data +#' +#' Z = linkage(X) returns a matrix Z that encodes a tree containing hierarchical clusters of the rows of the input data matrix X. +#' @param Y matrix #' @param method either 'si', 'av', 'co' 'ce' or 'wa' +#' @note This is also a base Matlab function. The reason why the source code is also present here is unclear. #' @export linkage <- function(Y, method = 'co') { + #TODO: compare R output with MATLAB output k <- size(Y)[1] n <- size(Y)[2] m <- (1 + sqrt(1 + 8 * n)) / 2 @@ -24,18 +28,33 @@ linkage <- function(Y, method = 'co') { N[1:m] <- 1 n <- m; # since m is changing, we need to save m in n. R <- 1:n - for (s in 1:(n-1)) { - X <- Y - v <- min(X)[1] - k <- min(X)[2] + for (s in 1:(n - 1)) { + X <- as.matrix(as.vector(Y), ncol=1) + + v <- min_MATLAB(X)$mins + k <- min_MATLAB(X)$idx + i <- floor(m + 1 / 2 - sqrt(m ^ 2 - m + 1 / 4 - 2 * (k - 1))) j <- k - (i - 1) * (m - i / 2) + i - Z[s, ] <- c(R[i], R[j], v) # update one more row to the output matrix A - # Temp variables - I1 <- 1:(i - 1) - I2 <- (i + 1):(j - 1) - I3 <- (j + 1):m + Z[s, ] <- c(R[i], R[j], v) # update one more row to the output matrix A + + # Temp variables + if (i > 1) { + I1 <- 1:(i - 1) + } else { + I1 <- NULL + } + if (i + 1 <= j - 1) { + I2 <- (i + 1):(j - 1) + } else { + I2 <- NULL + } + if (j + 1 <= m) { + I3 <- (j + 1):m + } else { + I3 <- NULL + } U <- c(I1, I2, I3) I <- c( I1 * (m - (I1 + 1) / 2) - m + i, @@ -47,11 +66,13 @@ linkage <- function(Y, method = 'co') { I2 * (m - (I2 + 1) / 2) - m + j, j * (m - (j + 1) / 2) - m + I3 ) - + # Workaround in R for negative values in I and J + # I <- I[I > 0 & I <= length(Y)] + # J <- J[J > 0 & J <= length(Y)] switch(method, - 'si' = Y[I] <- min(Y[I], Y[J]), # single linkage + 'si' = Y[I] <- apply(cbind(Y[I], Y[J]), 1, min), # single linkage 'av' = Y[I] <- Y[I] + Y[J], # average linkage - 'co' = Y[I] <- max(Y[I], Y[J]), #complete linkage + 'co' = Y[I] <- apply(cbind(Y[I], Y[J]), 1, max), #complete linkage 'ce' = { K <- N[R[i]] + N[R[j]] # centroid linkage Y[I] <- (N[R[i]] * Y[I] + N[R[j]] * Y[J] - @@ -61,8 +82,7 @@ linkage <- function(Y, method = 'co') { Y[J] - N[R[U]] * v) / (N[R[i]] + N[R[j]] + N[R[U]]) ) J <- c(J, i * (m - (i + 1) / 2) - m + j) - Y[J] <- vector() # no need for the cluster information about j - + Y <- Y[-J] # no need for the cluster information about j # update m, N, R m <- m - 1 N[n + s] <- N[R[i]] + N[R[j]]