Merge branch 'fix-newGetDistances' into import-genepop

This commit is contained in:
Waldir Leoncio 2020-07-31 13:59:50 +02:00
commit 6b34dba186
4 changed files with 75 additions and 30 deletions

View file

@ -4,10 +4,14 @@
#' linkage algorithm. The input Y is a distance matrix such as is generated by
#' PDIST. Y may also be a more general dissimilarity matrix conforming to the
#' output format of PDIST.
#' @param Y data
#'
#' Z = linkage(X) returns a matrix Z that encodes a tree containing hierarchical clusters of the rows of the input data matrix X.
#' @param Y matrix
#' @param method either 'si', 'av', 'co' 'ce' or 'wa'
#' @note This is also a base Matlab function. The reason why the source code is also present here is unclear.
#' @export
linkage <- function(Y, method = 'co') {
#TODO: compare R output with MATLAB output
k <- size(Y)[1]
n <- size(Y)[2]
m <- (1 + sqrt(1 + 8 * n)) / 2
@ -24,18 +28,33 @@ linkage <- function(Y, method = 'co') {
N[1:m] <- 1
n <- m; # since m is changing, we need to save m in n.
R <- 1:n
for (s in 1:(n-1)) {
X <- Y
v <- min(X)[1]
k <- min(X)[2]
for (s in 1:(n - 1)) {
X <- as.matrix(as.vector(Y), ncol=1)
v <- min_MATLAB(X)$mins
k <- min_MATLAB(X)$idx
i <- floor(m + 1 / 2 - sqrt(m ^ 2 - m + 1 / 4 - 2 * (k - 1)))
j <- k - (i - 1) * (m - i / 2) + i
Z[s, ] <- c(R[i], R[j], v) # update one more row to the output matrix A
# Temp variables
I1 <- 1:(i - 1)
I2 <- (i + 1):(j - 1)
I3 <- (j + 1):m
Z[s, ] <- c(R[i], R[j], v) # update one more row to the output matrix A
# Temp variables
if (i > 1) {
I1 <- 1:(i - 1)
} else {
I1 <- NULL
}
if (i + 1 <= j - 1) {
I2 <- (i + 1):(j - 1)
} else {
I2 <- NULL
}
if (j + 1 <= m) {
I3 <- (j + 1):m
} else {
I3 <- NULL
}
U <- c(I1, I2, I3)
I <- c(
I1 * (m - (I1 + 1) / 2) - m + i,
@ -47,11 +66,13 @@ linkage <- function(Y, method = 'co') {
I2 * (m - (I2 + 1) / 2) - m + j,
j * (m - (j + 1) / 2) - m + I3
)
# Workaround in R for negative values in I and J
# I <- I[I > 0 & I <= length(Y)]
# J <- J[J > 0 & J <= length(Y)]
switch(method,
'si' = Y[I] <- min(Y[I], Y[J]), # single linkage
'si' = Y[I] <- apply(cbind(Y[I], Y[J]), 1, min), # single linkage
'av' = Y[I] <- Y[I] + Y[J], # average linkage
'co' = Y[I] <- max(Y[I], Y[J]), #complete linkage
'co' = Y[I] <- apply(cbind(Y[I], Y[J]), 1, max), #complete linkage
'ce' = {
K <- N[R[i]] + N[R[j]] # centroid linkage
Y[I] <- (N[R[i]] * Y[I] + N[R[j]] * Y[J] -
@ -61,8 +82,7 @@ linkage <- function(Y, method = 'co') {
Y[J] - N[R[U]] * v) / (N[R[i]] + N[R[j]] + N[R[U]])
)
J <- c(J, i * (m - (i + 1) / 2) - m + j)
Y[J] <- vector() # no need for the cluster information about j
Y <- Y[-J] # no need for the cluster information about j
# update m, N, R
m <- m - 1
N[n + s] <- N[R[i]] + N[R[j]]

16
R/min.R Normal file
View file

@ -0,0 +1,16 @@
#' @title Minimum (MATLAB version)
#' @description Finds the minimum value for each column of a matrix, potentially returning the indices instead
#' @param X matrix
#' @param indices return indices?
#' @return Either a list or a vector
#' @author Waldir Leoncio
#' @export
min_MATLAB <- function(X, indices = TRUE) {
mins <- apply(X, 2, min)
idx <- sapply(seq_len(ncol(X)), function(x) match(mins[x], X[, x]))
if (indices) {
return(list(mins = mins, idx = idx))
} else {
return(mins)
}
}

View file

@ -5,14 +5,14 @@ newGetDistances <- function(data, rowsFromInd) {
empties <- find(data < 0)
data[empties] <- 0
data <- as.integer(data) # max(noalle) oltava <256
data <- apply(data, 2, as.numeric) # max(noalle) oltava <256
pariTaulu <- zeros(riviLkm, 2)
aPointer <- 1
for (a in (1:ninds) - 1) {
pariTaulu[aPointer:(aPointer + ninds - 1 - a), 1] <-
ones(ninds - a, 1) * a
pariTaulu[aPointer:aPointer + ninds - 1 - a, 2] <- t(a + 1:ninds)
for (a in 1:(ninds - 1)) {
pariTaulu_rows <- aPointer:(aPointer + ninds - 1 - a)
pariTaulu[pariTaulu_rows, 1] <- ones(ninds - a, 1) * a
pariTaulu[pariTaulu_rows, 2] <- t((a + 1):ninds)
aPointer <- aPointer + ninds - a
}
@ -31,9 +31,9 @@ newGetDistances <- function(data, rowsFromInd) {
rm(pariTaulu, miinus)
x <- zeros(size(eka))
x <- as.integer(x)
x <- apply(x, 2, as.integer)
y <- zeros(size(toka))
y <- as.integer(y)
y <- apply(y, 2, as.integer)
for (j in 1:nloci) {
for (k in 1:rowsFromInd) {
@ -57,7 +57,6 @@ newGetDistances <- function(data, rowsFromInd) {
muut <- find(vertailuja > 0)
dist[muut] <- summa[muut] / vertailuja[muut]
rm(summa, vertailuja)
Z = linkage(t(dist))
Z <- linkage(t(dist))
return(list(Z = Z, dist = dist))
}

View file

@ -1,11 +1,21 @@
# library(devtools)#TEMP
# library(testthat)#TEMP
library(testthat)#TEMP
# library(rBAPS)#TEMP
context("Opening files on greedyMix")
# greedyMix(
# tietue = "data/ExamplesDataFormatting/Example baseline data in GENEPOP format for Trained clustering.txt",
# format = "GenePop",
# savePreProcessed = FALSE
# )
greedyMix(
tietue = "data/ExamplesDataFormatting/Example baseline data in GENEPOP format for Trained clustering.txt",
format = "GenePop",
savePreProcessed = FALSE
)
context("Linkage")
test_that("Linkages are properly calculated", {
Y <- c(0.5, 0.3, 0.6, 0.3, 0.3, 0.2, 0.3, 0.3, 0.3, 0.5)
expect_equal(
object = linkage(Y),
expected = matrix(c(2, 1, 7, 8, 4, 3, 5, 6, .2, .3, .3, .6), ncol=3)
)
})