Merge branch 'admix1' into dev
This commit is contained in:
commit
7ad4fc43df
13 changed files with 622 additions and 322 deletions
|
|
@ -8,6 +8,7 @@ export(computeIndLogml)
|
|||
export(computePersonalAllFreqs)
|
||||
export(computeRows)
|
||||
export(etsiParas)
|
||||
export(inputdlg)
|
||||
export(isfield)
|
||||
export(laskeMuutokset4)
|
||||
export(learn_simple_partition)
|
||||
|
|
|
|||
682
R/admix1.R
682
R/admix1.R
|
|
@ -1,49 +1,64 @@
|
|||
#' @title Admixture analysis
|
||||
#' @param tietue record
|
||||
#' @details If the record == -1, the mixture results file is loaded. Otherwise, will the required variables be retrieved from the record fields?
|
||||
#' @param tietue a named record list
|
||||
#' @details If the record == -1, the mixture results file is loaded. Otherwise,
|
||||
#' will the required variables be retrieved from the record fields?
|
||||
#' `tietue`should contain the following elements: PARTITION, COUNTS, SUMCOUNTS,
|
||||
#' alleleCodes, adjprior, popnames, rowsFromInd, data, npops, noalle
|
||||
#' @export
|
||||
admix1 <- function(tietue) {
|
||||
admix1 <- function(tietue, PARTITION = matrix(NA, 0, 0),
|
||||
COUNTS = matrix(NA, 0, 0), SUMCOUNTS = NA) {
|
||||
if (!is.list(tietue)) {
|
||||
# c(filename, pathname) = uigetfile('*.mat', 'Load mixture result file');
|
||||
# if (filename==0 & pathname==0), return;
|
||||
# else
|
||||
# disp('---------------------------------------------------');
|
||||
# disp(['Reading mixture result from: ',[pathname filename],'...']);
|
||||
# end
|
||||
# pause(0.0001);
|
||||
# h0 = findobj('Tag','filename1_text');
|
||||
# set(h0,'String',filename); clear h0;
|
||||
message('Load mixture result file. These are the files in this directory:')
|
||||
print(list.files())
|
||||
pathname_filename <- file.choose()
|
||||
if (!file.exists(pathname_filename)) {
|
||||
stop(
|
||||
"File ", pathname_filename,
|
||||
" does not exist. Check spelling and location."
|
||||
)
|
||||
} else {
|
||||
cat('---------------------------------------------------\n');
|
||||
message('Reading mixture result from: ', pathname_filename, '...')
|
||||
}
|
||||
sys.sleep(0.0001) #ASK: what for?
|
||||
|
||||
# struct_array = load([pathname filename]);
|
||||
# if isfield(struct_array,'c') #Matlab versio
|
||||
# c = struct_array.c;
|
||||
# if ~isfield(c,'PARTITION') | ~isfield(c,'rowsFromInd')
|
||||
# disp('Incorrect file format');
|
||||
# return
|
||||
# end
|
||||
# elseif isfield(struct_array,'PARTITION') #Mideva versio
|
||||
# c = struct_array;
|
||||
# if ~isfield(c,'rowsFromInd')
|
||||
# disp('Incorrect file format');
|
||||
# return
|
||||
# end
|
||||
# else
|
||||
# disp('Incorrect file format');
|
||||
# return;
|
||||
# end
|
||||
# ASK: what is this supposed to do? What do graphic obj have to do here?
|
||||
# h0 = findobj('Tag','filename1_text');
|
||||
# set(h0,'String',filename); clear h0;
|
||||
|
||||
# if isfield(c, 'gene_lengths') && ...
|
||||
# (strcmp(c.mixtureType,'linear_mix') | ...
|
||||
# strcmp(c.mixtureType,'codon_mix')) # if the mixture is from a linkage model
|
||||
# # Redirect the call to the linkage admixture function.
|
||||
# c.data = noIndex(c.data,c.noalle); # call function noindex to remove the index column
|
||||
# linkage_admix(c);
|
||||
# return
|
||||
# end
|
||||
struct_array <- load(pathname_filename)
|
||||
if (isfield(struct_array, 'c')) { #Matlab versio
|
||||
c <- struct_array$c
|
||||
if (!isfield(c, 'PARTITION') | !isfield(c,'rowsFromInd')) {
|
||||
stop('Incorrect file format')
|
||||
}
|
||||
} else if (isfield(struct_array, 'PARTITION')) { #Mideva versio
|
||||
c <- struct_array
|
||||
if (!isfield(c,'rowsFromInd')) stop('Incorrect file format')
|
||||
} else {
|
||||
stop('Incorrect file format')
|
||||
}
|
||||
|
||||
# PARTITION = c.PARTITION; COUNTS = c.COUNTS; SUMCOUNTS = c.SUMCOUNTS;
|
||||
# alleleCodes = c.alleleCodes; adjprior = c.adjprior; popnames = c.popnames;
|
||||
# rowsFromInd = c.rowsFromInd; data = c.data; npops = c.npops; noalle = c.noalle;
|
||||
if (isfield(c, 'gene_lengths') &
|
||||
strcmp(c$mixtureType, 'linear_mix') |
|
||||
strcmp(c$mixtureType, 'codon_mix')) { # if the mixture is from a linkage model
|
||||
# Redirect the call to the linkage admixture function.
|
||||
# call function noindex to remove the index column
|
||||
c$data <- noIndex(c$data, c$noalle)
|
||||
# linkage_admix(c) # ASK: translate this function to R or drop?
|
||||
# return
|
||||
stop("linkage_admix not implemented")
|
||||
}
|
||||
PARTITION <- c$PARTITION
|
||||
COUNTS <- c$COUNTS
|
||||
SUMCOUNTS <- c$SUMCOUNTS
|
||||
alleleCodes <- c$alleleCodes
|
||||
adjprior <- c$adjprior
|
||||
popnames <- c$popnames
|
||||
rowsFromInd <- c$rowsFromInd
|
||||
data <- c$data
|
||||
npops <- c$npops
|
||||
noalle <- c$noalle
|
||||
} else {
|
||||
PARTITION <- tietue$PARTITION
|
||||
COUNTS <- tietue$COUNTS
|
||||
|
|
@ -57,297 +72,334 @@ admix1 <- function(tietue) {
|
|||
noalle <- tietue$noalle
|
||||
}
|
||||
|
||||
# answers = inputdlg({['Input the minimum size of a population that will'...
|
||||
# ' be taken into account when admixture is estimated.']},...
|
||||
# 'Input minimum population size',[1],...
|
||||
# {'5'});
|
||||
# if isempty(answers) return; end
|
||||
# alaRaja = str2num(answers{1,1});
|
||||
# [npops] = poistaLiianPienet(npops, rowsFromInd, alaRaja);
|
||||
answers <- inputdlg(
|
||||
prompt = paste(
|
||||
"Input the minimum size of a population that will",
|
||||
"be taken into account when admixture is estimated."
|
||||
),
|
||||
definput = 5
|
||||
)
|
||||
alaRaja <- as.num(answers)
|
||||
npops <- poistaLiianPienet(npops, rowsFromInd, alaRaja)
|
||||
|
||||
# nloci = size(COUNTS,2);
|
||||
# ninds = size(data,1)/rowsFromInd;
|
||||
nloci <- size(COUNTS, 2)
|
||||
ninds <- size(data, 1) / rowsFromInd
|
||||
|
||||
# answers = inputdlg({['Input number of iterations']},'Input',[1],{'50'});
|
||||
# if isempty(answers) return; end
|
||||
# iterationCount = str2num(answers{1,1});
|
||||
answers <- inputdlg('Input number of iterations', 50)
|
||||
if (isempty(answers)) return()
|
||||
iterationCount <- as.numeric(answers[1, 1]) # maybe [[]]?
|
||||
|
||||
# answers = inputdlg({['Input number of reference individuals from each population']},'Input',[1],{'50'});
|
||||
# if isempty(answers) nrefIndsInPop = 50;
|
||||
# else nrefIndsInPop = str2num(answers{1,1});
|
||||
# end
|
||||
answers <- inputdlg(
|
||||
prompt = 'Input number of reference individuals from each population',
|
||||
definput = 50
|
||||
)
|
||||
if (isempty(answers)) {
|
||||
nrefIndsInPop <- 50
|
||||
} else {
|
||||
nrefIndsInPop <- as.numeric(answers[1, 1])
|
||||
}
|
||||
|
||||
# answers = inputdlg({['Input number of iterations for reference individuals']},'Input',[1],{'10'});
|
||||
# if isempty(answers) return; end
|
||||
# iterationCountRef = str2num(answers{1,1});
|
||||
answers <- inputdlg(
|
||||
prompt = 'Input number of iterations for reference individuals',
|
||||
definput = 10
|
||||
)
|
||||
if (isempty(answers)) return()
|
||||
iterationCountRef <- as.numeric(answers[1, 1])
|
||||
|
||||
# First calculate log-likelihood ratio for all individuals:
|
||||
likelihood <- zeros(ninds, 1)
|
||||
allfreqs <- computeAllFreqs2(noalle)
|
||||
for (ind in 1:ninds) {
|
||||
omaFreqs <- computePersonalAllFreqs(ind, data, allfreqs, rowsFromInd)
|
||||
osuusTaulu <- zeros(1, npops)
|
||||
if (PARTITION[ind] == 0) {
|
||||
# Yksil?on outlier
|
||||
} else if (PARTITION[ind] != 0) {
|
||||
if (PARTITION[ind] > 0) {
|
||||
osuusTaulu(PARTITION[ind]) <- 1
|
||||
} else {
|
||||
# Yksilöt, joita ei ole sijoitettu mihinkään koriin.
|
||||
arvot <- zeros(1, npops)
|
||||
for (q in 1:npops) {
|
||||
osuusTaulu <- zeros(1, npops)
|
||||
osuusTaulu[q] <- 1
|
||||
arvot[q] <- computeIndLogml(omaFreqs, osuusTaulu)
|
||||
}
|
||||
iso_arvo <- max(arvot)
|
||||
isoimman_indeksi <- match(max(arvot), arvot)
|
||||
osuusTaulu <- zeros(1, npops)
|
||||
osuusTaulu[isoimman_indeksi] <- 1
|
||||
PARTITION[ind] <- isoimman_indeksi
|
||||
}
|
||||
logml <- computeIndLogml(omaFreqs, osuusTaulu)
|
||||
logmlAlku <- logml
|
||||
for (osuus in c(0.5, 0.25, 0.05, 0.01)) {
|
||||
etsiResult <- etsiParas(osuus, osuusTaulu, omaFreqs, logml)
|
||||
osuusTaulu <- etsiResult[1]
|
||||
logml <- etsiResult[2]
|
||||
}
|
||||
logmlLoppu <- logml
|
||||
likelihood[ind] <- logmlLoppu - logmlAlku
|
||||
}
|
||||
}
|
||||
|
||||
# Analyze further only individuals who have log-likelihood ratio larger than 3:
|
||||
to_investigate <- t(find(likelihood > 3))
|
||||
cat('Possibly admixed individuals:\n')
|
||||
for (i in 1:length(to_investigate)) {
|
||||
cat(as.character(to_investigate[i]))
|
||||
}
|
||||
cat(' ')
|
||||
cat('Populations for possibly admixed individuals:\n')
|
||||
admix_populaatiot <- unique(PARTITION[to_investigate])
|
||||
for (i in 1:length(admix_populaatiot)) {
|
||||
cat(as.character(admix_populaatiot[i]))
|
||||
}
|
||||
|
||||
# THUS, there are two types of individuals, who will not be analyzed with
|
||||
# simulated allele frequencies: those who belonged to a mini-population
|
||||
# which was removed, and those who have log-likelihood ratio less than 3.
|
||||
# The value in the PARTITION for the first kind of individuals is 0. The
|
||||
# second kind of individuals can be identified, because they do not
|
||||
# belong to "to_investigate" array. When the results are presented, the
|
||||
# first kind of individuals are omitted completely, while the second kind
|
||||
# of individuals are completely put to the population, where they ended up
|
||||
# in the mixture analysis. These second type of individuals will have a
|
||||
# unit p-value.
|
||||
|
||||
|
||||
# # First calculate log-likelihood ratio for all individuals:
|
||||
# likelihood = zeros(ninds,1);
|
||||
# allfreqs = computeAllFreqs2(noalle);
|
||||
# for ind = 1:ninds
|
||||
# omaFreqs = computePersonalAllFreqs(ind, data, allfreqs, rowsFromInd);
|
||||
# osuusTaulu = zeros(1,npops);
|
||||
# if PARTITION(ind)==0
|
||||
# # Yksil?on outlier
|
||||
# elseif PARTITION(ind)~=0
|
||||
# if PARTITION(ind)>0
|
||||
# osuusTaulu(PARTITION(ind)) = 1;
|
||||
# else
|
||||
# # Yksilöt, joita ei ole sijoitettu mihinkään koriin.
|
||||
# arvot = zeros(1,npops);
|
||||
# for q=1:npops
|
||||
# osuusTaulu = zeros(1,npops);
|
||||
# osuusTaulu(q) = 1;
|
||||
# arvot(q) = computeIndLogml(omaFreqs, osuusTaulu);
|
||||
# end
|
||||
# [iso_arvo, isoimman_indeksi] = max(arvot);
|
||||
# osuusTaulu = zeros(1,npops);
|
||||
# osuusTaulu(isoimman_indeksi) = 1;
|
||||
# PARTITION(ind)=isoimman_indeksi;
|
||||
# end
|
||||
# logml = computeIndLogml(omaFreqs, osuusTaulu);
|
||||
# logmlAlku = logml;
|
||||
# for osuus = [0.5 0.25 0.05 0.01]
|
||||
# [osuusTaulu, logml] = etsiParas(osuus, osuusTaulu, omaFreqs, logml);
|
||||
# end
|
||||
# logmlLoppu = logml;
|
||||
# likelihood(ind) = logmlLoppu-logmlAlku;
|
||||
# end
|
||||
# end
|
||||
# Simulate allele frequencies a given number of times and save the average
|
||||
# result to "proportionsIt" array.
|
||||
|
||||
# # Analyze further only individuals who have log-likelihood ratio larger than 3:
|
||||
# to_investigate = (find(likelihood>3))';
|
||||
# disp('Possibly admixed individuals: ');
|
||||
# for i = 1:length(to_investigate)
|
||||
# disp(num2str(to_investigate(i)));
|
||||
# end
|
||||
# disp(' ');
|
||||
# disp('Populations for possibly admixed individuals: ');
|
||||
# admix_populaatiot = unique(PARTITION(to_investigate));
|
||||
# for i = 1:length(admix_populaatiot)
|
||||
# disp(num2str(admix_populaatiot(i)));
|
||||
# end
|
||||
proportionsIt <- zeros(ninds, npops)
|
||||
for (iterationNum in 1:iterationCount) {
|
||||
cat('Iter:', as.character(iterationNum))
|
||||
allfreqs <- simulateAllFreqs(noalle) # Allele frequencies on this iteration.
|
||||
|
||||
# # THUS, there are two types of individuals, who will not be analyzed with
|
||||
# # simulated allele frequencies: those who belonged to a mini-population
|
||||
# # which was removed, and those who have log-likelihood ratio less than 3.
|
||||
# # The value in the PARTITION for the first kind of individuals is 0. The
|
||||
# # second kind of individuals can be identified, because they do not
|
||||
# # belong to "to_investigate" array. When the results are presented, the
|
||||
# # first kind of individuals are omitted completely, while the second kind
|
||||
# # of individuals are completely put to the population, where they ended up
|
||||
# # in the mixture analysis. These second type of individuals will have a
|
||||
# # unit p-value.
|
||||
for (ind in to_investigate) {
|
||||
#disp(num2str(ind));
|
||||
omaFreqs <- computePersonalAllFreqs(
|
||||
ind, data, allfreqs, rowsFromInd
|
||||
)
|
||||
osuusTaulu = zeros(1, npops)
|
||||
if (PARTITION[ind] == 0) {
|
||||
# Yksil?on outlier
|
||||
} else if (PARTITION[ind] != 0) {
|
||||
if (PARTITION[ind] > 0) {
|
||||
osuusTaulu(PARTITION[ind]) <- 1
|
||||
} else {
|
||||
# Yksilöt, joita ei ole sijoitettu mihinkään koriin.
|
||||
arvot <- zeros(1, npops)
|
||||
for (q in 1:npops) {
|
||||
osuusTaulu <- zeros(1, npops)
|
||||
osuusTaulu[q] <- 1
|
||||
arvot[q] <- computeIndLogml(omaFreqs, osuusTaulu)
|
||||
}
|
||||
iso_arvo <- max(arvot)
|
||||
isoimman_indeksi <- match(max(arvot), arvot)
|
||||
osuusTaulu <- zeros(1, npops)
|
||||
osuusTaulu[isoimman_indeksi] <- 1
|
||||
PARTITION[ind] <- isoimman_indeksi
|
||||
}
|
||||
logml <- computeIndLogml(omaFreqs, osuusTaulu)
|
||||
|
||||
for (osuus in c(0.5, 0.25, 0.05, 0.01)) {
|
||||
etsiResult <- etsiParas(osuus, osuusTaulu, omaFreqs, logml)
|
||||
osuusTaulu <- etsiResult[1]
|
||||
logml <- etsiResult[2]
|
||||
}
|
||||
}
|
||||
proportionsIt[ind, ] <- proportionsIt[ind, ] * (iterationNum - 1) +
|
||||
osuusTaulu
|
||||
proportionsIt[ind, ] <- proportionsIt[ind, ] / iterationNum
|
||||
}
|
||||
}
|
||||
|
||||
#disp(['Creating ' num2str(nrefIndsInPop) ' reference individuals from ']);
|
||||
#disp('each population.');
|
||||
|
||||
#allfreqs = simulateAllFreqs(noalle); # Simuloidaan alleelifrekvenssisetti
|
||||
allfreqs <- computeAllFreqs2(noalle); # Koitetaan tällaista.
|
||||
|
||||
|
||||
# # Simulate allele frequencies a given number of times and save the average
|
||||
# # result to "proportionsIt" array.
|
||||
# Initialize the data structures, which are required in taking the missing
|
||||
# data into account:
|
||||
n_missing_levels <- zeros(npops, 1) # number of different levels of "missingness" in each pop (max 3).
|
||||
missing_levels <- zeros(npops, 3) # the mean values for different levels.
|
||||
missing_level_partition <- zeros(ninds, 1) # level of each individual (one of the levels of its population).
|
||||
for (i in 1:npops) {
|
||||
inds <- find(PARTITION == i)
|
||||
# Proportions of non-missing data for the individuals:
|
||||
non_missing_data <- zeros(length(inds), 1)
|
||||
for (j in 1:length(inds)) {
|
||||
ind <- inds[j]
|
||||
non_missing_data[j] <- length(
|
||||
find(data[(ind - 1) * rowsFromInd + 1:ind * rowsFromInd, ] > 0)
|
||||
) / (rowsFromInd * nloci)
|
||||
}
|
||||
if (all(non_missing_data > 0.9)) {
|
||||
n_missing_levels[i] <- 1
|
||||
missing_levels[i, 1] <- mean(non_missing_data)
|
||||
missing_level_partition[inds] <- 1
|
||||
} else {
|
||||
# TODO: fix syntax
|
||||
# [ordered, ordering] = sort(non_missing_data);
|
||||
ordered <- ordering <- sort(non_missing_data)
|
||||
#part = learn_simple_partition(ordered, 0.05);
|
||||
part <- learn_partition_modified(ordered)
|
||||
aux <- sortrows(cbind(part, ordering), 2)
|
||||
part = aux[, 1]
|
||||
missing_level_partition[inds]<- part
|
||||
n_levels <- length(unique(part))
|
||||
n_missing_levels[i] <- n_levels
|
||||
for (j in 1:n_levels) {
|
||||
missing_levels[i, j] <- mean(non_missing_data[find(part == j)])
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# proportionsIt = zeros(ninds,npops);
|
||||
# for iterationNum = 1:iterationCount
|
||||
# disp(['Iter: ' num2str(iterationNum)]);
|
||||
# allfreqs = simulateAllFreqs(noalle); # Allele frequencies on this iteration.
|
||||
# Create and analyse reference individuals for populations
|
||||
# with potentially admixed individuals:
|
||||
refTaulu <- zeros(npops, 100, 3)
|
||||
for (pop in t(admix_populaatiot)) {
|
||||
|
||||
# for ind=to_investigate
|
||||
# #disp(num2str(ind));
|
||||
# omaFreqs = computePersonalAllFreqs(ind, data, allfreqs, rowsFromInd);
|
||||
# osuusTaulu = zeros(1,npops);
|
||||
# if PARTITION(ind)==0
|
||||
# # Yksil?on outlier
|
||||
# elseif PARTITION(ind)~=0
|
||||
# if PARTITION(ind)>0
|
||||
# osuusTaulu(PARTITION(ind)) = 1;
|
||||
# else
|
||||
# # Yksilöt, joita ei ole sijoitettu mihinkään koriin.
|
||||
# arvot = zeros(1,npops);
|
||||
# for q=1:npops
|
||||
# osuusTaulu = zeros(1,npops);
|
||||
# osuusTaulu(q) = 1;
|
||||
# arvot(q) = computeIndLogml(omaFreqs, osuusTaulu);
|
||||
# end
|
||||
# [iso_arvo, isoimman_indeksi] = max(arvot);
|
||||
# osuusTaulu = zeros(1,npops);
|
||||
# osuusTaulu(isoimman_indeksi) = 1;
|
||||
# PARTITION(ind)=isoimman_indeksi;
|
||||
# end
|
||||
# logml = computeIndLogml(omaFreqs, osuusTaulu);
|
||||
for (level in 1:n_missing_levels[pop]) {
|
||||
|
||||
# for osuus = [0.5 0.25 0.05 0.01]
|
||||
# [osuusTaulu, logml] = etsiParas(osuus, osuusTaulu, omaFreqs, logml);
|
||||
# end
|
||||
# end
|
||||
# proportionsIt(ind,:) = proportionsIt(ind,:).*(iterationNum-1) + osuusTaulu;
|
||||
# proportionsIt(ind,:) = proportionsIt(ind,:)./iterationNum;
|
||||
# end
|
||||
# end
|
||||
potential_inds_in_this_pop_and_level <-
|
||||
find(
|
||||
PARTITION == pop & missing_level_partition == level &
|
||||
likelihood > 3
|
||||
) # Potential admix individuals here.
|
||||
|
||||
# #disp(['Creating ' num2str(nrefIndsInPop) ' reference individuals from ']);
|
||||
# #disp('each population.');
|
||||
if (!isempty(potential_inds_in_this_pop_and_level)) {
|
||||
|
||||
# #allfreqs = simulateAllFreqs(noalle); # Simuloidaan alleelifrekvenssisetti
|
||||
# allfreqs = computeAllFreqs2(noalle); # Koitetaan tällaista.
|
||||
#refData = simulateIndividuals(nrefIndsInPop,rowsFromInd,allfreqs);
|
||||
refData <- simulateIndividuals(
|
||||
nrefIndsInPop, rowsFromInd, allfreqs, pop,
|
||||
missing_levels[pop, level]
|
||||
)
|
||||
|
||||
cat(
|
||||
'Analysing the reference individuals from pop', pop,
|
||||
'(level', level, ').'
|
||||
)
|
||||
refProportions <- zeros(nrefIndsInPop, npops)
|
||||
for (iter in 1:iterationCountRef) {
|
||||
#disp(['Iter: ' num2str(iter)]);
|
||||
allfreqs <- simulateAllFreqs(noalle)
|
||||
|
||||
for (ind in 1:nrefIndsInPop) {
|
||||
omaFreqs <- computePersonalAllFreqs(
|
||||
ind, refData, allfreqs, rowsFromInd
|
||||
)
|
||||
osuusTaulu <- zeros(1, npops)
|
||||
osuusTaulu[pop] <- 1
|
||||
logml <- computeIndLogml(omaFreqs, osuusTaulu)
|
||||
for (osuus in c(0.5, 0.25, 0.05, 0.01)) {
|
||||
etsiResult <- etsiParas(
|
||||
osuus, osuusTaulu, omaFreqs, logml
|
||||
)
|
||||
osuusTaulu <- etsiResult[1]
|
||||
logml <- etsiResult[2]
|
||||
}
|
||||
refProportions[ind, ] <-
|
||||
refProportions[ind, ] * (iter - 1) + osuusTaulu
|
||||
refProportions[ind, ] <- refProportions[ind, ] / iter
|
||||
}
|
||||
}
|
||||
for (ind in 1:nrefIndsInPop) {
|
||||
omanOsuus <- refProportions[ind, pop]
|
||||
if (round(omanOsuus * 100) == 0) {
|
||||
omanOsuus <- 0.01
|
||||
}
|
||||
if (abs(omanOsuus) < 1e-5) {
|
||||
omanOsuus <- 0.01
|
||||
}
|
||||
refTaulu[pop, round(omanOsuus*100), level] <-
|
||||
refTaulu[pop, round(omanOsuus*100),level] + 1
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Rounding of the results:
|
||||
proportionsIt <- proportionsIt * 100
|
||||
proportionsIt <- round(proportionsIt)
|
||||
proportionsIt <- proportionsIt / 100
|
||||
for (ind in 1:ninds) {
|
||||
if (!any(to_investigate == ind)) {
|
||||
if (PARTITION[ind] > 0) {
|
||||
proportionsIt[ind, PARTITION[ind]] <- 1
|
||||
}
|
||||
} else {
|
||||
# In case of a rounding error, the sum is made equal to unity by
|
||||
# fixing the largest value.
|
||||
if ((PARTITION[ind] > 0) & (sum(proportionsIt[ind, ]) != 1)) {
|
||||
isoin <- max(proportionsIt[ind, ])
|
||||
indeksi <- match(isoin, max(proportionsIt[ind, ]))
|
||||
erotus <- sum(proportionsIt[ind, ]) - 1
|
||||
proportionsIt[ind, indeksi] <- isoin - erotus
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
# Calculate p-value for each individual:
|
||||
uskottavuus <- zeros(ninds, 1)
|
||||
for (ind in 1:ninds) {
|
||||
pop <- PARTITION[ind]
|
||||
if (pop == 0) { # Individual is outlier
|
||||
uskottavuus[ind] <- 1
|
||||
} else if (isempty(find(to_investigate == ind))) {
|
||||
# Individual had log-likelihood ratio<3
|
||||
uskottavuus[ind] <- 1
|
||||
} else {
|
||||
omanOsuus <- proportionsIt[ind, pop]
|
||||
if (abs(omanOsuus) < 1e-5) {
|
||||
omanOsuus <- 0.01
|
||||
}
|
||||
if (round(omanOsuus*100)==0) {
|
||||
omanOsuus <- 0.01
|
||||
}
|
||||
level <- missing_level_partition[ind]
|
||||
refPienempia <- sum(refTaulu[pop, 1:round(100*omanOsuus), level])
|
||||
uskottavuus[ind] <- refPienempia / nrefIndsInPop
|
||||
}
|
||||
}
|
||||
|
||||
# ASK: Remove? are these plotting functions?
|
||||
tulostaAdmixtureTiedot(proportionsIt, uskottavuus, alaRaja, iterationCount)
|
||||
viewPartition(proportionsIt, popnames)
|
||||
|
||||
talle = inputdlg('Do you want to save the admixture results? [Y/n]', 'y')
|
||||
if (talle %in% c('y', 'Y', 'yes', 'Yes')) {
|
||||
#waitALittle;
|
||||
filename <- inputdlg(
|
||||
'Save results as (file name):', 'admixture_results.rda'
|
||||
)
|
||||
|
||||
|
||||
# # Initialize the data structures, which are required in taking the missing
|
||||
# # data into account:
|
||||
# n_missing_levels = zeros(npops,1); # number of different levels of "missingness" in each pop (max 3).
|
||||
# missing_levels = zeros(npops,3); # the mean values for different levels.
|
||||
# missing_level_partition = zeros(ninds,1); # level of each individual (one of the levels of its population).
|
||||
# for i=1:npops
|
||||
# inds = find(PARTITION==i);
|
||||
# # Proportions of non-missing data for the individuals:
|
||||
# non_missing_data = zeros(length(inds),1);
|
||||
# for j = 1:length(inds)
|
||||
# ind = inds(j);
|
||||
# non_missing_data(j) = length(find(data((ind-1)*rowsFromInd+1:ind*rowsFromInd,:)>0)) ./ (rowsFromInd*nloci);
|
||||
# end
|
||||
# if all(non_missing_data>0.9)
|
||||
# n_missing_levels(i) = 1;
|
||||
# missing_levels(i,1) = mean(non_missing_data);
|
||||
# missing_level_partition(inds) = 1;
|
||||
# else
|
||||
# [ordered, ordering] = sort(non_missing_data);
|
||||
# #part = learn_simple_partition(ordered, 0.05);
|
||||
# part = learn_partition_modified(ordered);
|
||||
# aux = sortrows([part ordering],2);
|
||||
# part = aux(:,1);
|
||||
# missing_level_partition(inds) = part;
|
||||
# n_levels = length(unique(part));
|
||||
# n_missing_levels(i) = n_levels;
|
||||
# for j=1:n_levels
|
||||
# missing_levels(i,j) = mean(non_missing_data(find(part==j)));
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
if (filename == 0) {
|
||||
# Cancel was pressed
|
||||
return()
|
||||
} else { # copy 'baps4_output.baps' into the text file with the same name.
|
||||
if (file.exists('baps4_output.baps')) {
|
||||
file.copy('baps4_output.baps', paste0(filename, '.txt'))
|
||||
file.remove('baps4_output.baps')
|
||||
}
|
||||
}
|
||||
|
||||
# # Create and analyse reference individuals for populations
|
||||
# # with potentially admixed individuals:
|
||||
# refTaulu = zeros(npops,100,3);
|
||||
# for pop = admix_populaatiot'
|
||||
|
||||
# for level = 1:n_missing_levels(pop)
|
||||
|
||||
# potential_inds_in_this_pop_and_level = ...
|
||||
# find(PARTITION==pop & missing_level_partition==level &...
|
||||
# likelihood>3); # Potential admix individuals here.
|
||||
|
||||
# if ~isempty(potential_inds_in_this_pop_and_level)
|
||||
|
||||
# #refData = simulateIndividuals(nrefIndsInPop,rowsFromInd,allfreqs);
|
||||
# refData = simulateIndividuals(nrefIndsInPop, rowsFromInd, allfreqs, ...
|
||||
# pop, missing_levels(pop,level));
|
||||
|
||||
# disp(['Analysing the reference individuals from pop ' num2str(pop) ' (level ' num2str(level) ').']);
|
||||
# refProportions = zeros(nrefIndsInPop,npops);
|
||||
# for iter = 1:iterationCountRef
|
||||
# #disp(['Iter: ' num2str(iter)]);
|
||||
# allfreqs = simulateAllFreqs(noalle);
|
||||
|
||||
# for ind = 1:nrefIndsInPop
|
||||
# omaFreqs = computePersonalAllFreqs(ind, refData, allfreqs, rowsFromInd);
|
||||
# osuusTaulu = zeros(1,npops);
|
||||
# osuusTaulu(pop)=1;
|
||||
# logml = computeIndLogml(omaFreqs, osuusTaulu);
|
||||
# for osuus = [0.5 0.25 0.05 0.01]
|
||||
# [osuusTaulu, logml] = etsiParas(osuus, osuusTaulu, omaFreqs, logml);
|
||||
# end
|
||||
# refProportions(ind,:) = refProportions(ind,:).*(iter-1) + osuusTaulu;
|
||||
# refProportions(ind,:) = refProportions(ind,:)./iter;
|
||||
# end
|
||||
# end
|
||||
# for ind = 1:nrefIndsInPop
|
||||
# omanOsuus = refProportions(ind,pop);
|
||||
# if round(omanOsuus*100)==0
|
||||
# omanOsuus = 0.01;
|
||||
# end
|
||||
# if abs(omanOsuus)<1e-5
|
||||
# omanOsuus = 0.01;
|
||||
# end
|
||||
# refTaulu(pop, round(omanOsuus*100),level) = refTaulu(pop, round(omanOsuus*100),level)+1;
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
|
||||
# # Rounding of the results:
|
||||
# proportionsIt = proportionsIt.*100; proportionsIt = round(proportionsIt);
|
||||
# proportionsIt = proportionsIt./100;
|
||||
# for ind = 1:ninds
|
||||
# if ~any(to_investigate==ind)
|
||||
# if PARTITION(ind)>0
|
||||
# proportionsIt(ind,PARTITION(ind))=1;
|
||||
# end
|
||||
# else
|
||||
# # In case of a rounding error, the sum is made equal to unity by
|
||||
# # fixing the largest value.
|
||||
# if (PARTITION(ind)>0) & (sum(proportionsIt(ind,:)) ~= 1)
|
||||
# [isoin,indeksi] = max(proportionsIt(ind,:));
|
||||
# erotus = sum(proportionsIt(ind,:))-1;
|
||||
# proportionsIt(ind,indeksi) = isoin-erotus;
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
|
||||
# # Calculate p-value for each individual:
|
||||
# uskottavuus = zeros(ninds,1);
|
||||
# for ind = 1:ninds
|
||||
# pop = PARTITION(ind);
|
||||
# if pop==0 # Individual is outlier
|
||||
# uskottavuus(ind)=1;
|
||||
# elseif isempty(find(to_investigate==ind))
|
||||
# # Individual had log-likelihood ratio<3
|
||||
# uskottavuus(ind)=1;
|
||||
# else
|
||||
# omanOsuus = proportionsIt(ind,pop);
|
||||
# if abs(omanOsuus)<1e-5
|
||||
# omanOsuus = 0.01;
|
||||
# end
|
||||
# if round(omanOsuus*100)==0
|
||||
# omanOsuus = 0.01;
|
||||
# end
|
||||
# level = missing_level_partition(ind);
|
||||
# refPienempia = sum(refTaulu(pop, 1:round(100*omanOsuus), level));
|
||||
# uskottavuus(ind) = refPienempia / nrefIndsInPop;
|
||||
# end
|
||||
# end
|
||||
|
||||
# tulostaAdmixtureTiedot(proportionsIt, uskottavuus, alaRaja, iterationCount);
|
||||
|
||||
# viewPartition(proportionsIt, popnames);
|
||||
|
||||
# talle = questdlg(['Do you want to save the admixture results?'], ...
|
||||
# 'Save results?','Yes','No','Yes');
|
||||
# if isequal(talle,'Yes')
|
||||
# #waitALittle;
|
||||
# [filename, pathname] = uiputfile('*.mat','Save results as');
|
||||
|
||||
|
||||
# if (filename == 0) & (pathname == 0)
|
||||
# # Cancel was pressed
|
||||
# return
|
||||
# else # copy 'baps4_output.baps' into the text file with the same name.
|
||||
# if exist('baps4_output.baps','file')
|
||||
# copyfile('baps4_output.baps',[pathname filename '.txt'])
|
||||
# delete('baps4_output.baps')
|
||||
# end
|
||||
# end
|
||||
|
||||
|
||||
# if (~isstruct(tietue))
|
||||
# c.proportionsIt = proportionsIt;
|
||||
# c.pvalue = uskottavuus; # Added by Jing
|
||||
# c.mixtureType = 'admix'; # Jing
|
||||
# c.admixnpops = npops;
|
||||
# # save([pathname filename], 'c');
|
||||
# save([pathname filename], 'c', '-v7.3'); # added by Lu Cheng, 08.06.2012
|
||||
# else
|
||||
# tietue.proportionsIt = proportionsIt;
|
||||
# tietue.pvalue = uskottavuus; # Added by Jing
|
||||
# tietue.mixtureType = 'admix';
|
||||
# tietue.admixnpops = npops;
|
||||
# # save([pathname filename], 'tietue');
|
||||
# save([pathname filename], 'tietue', '-v7.3'); # added by Lu Cheng, 08.06.2012
|
||||
# end
|
||||
# end
|
||||
if (!isstruct(tietue)) {
|
||||
c$proportionsIt <- proportionsIt
|
||||
c$pvalue <- uskottavuus # Added by Jing
|
||||
c$mixtureType <- 'admix' # Jing
|
||||
c$admixnpops <- npops;
|
||||
save(c, file=filename)
|
||||
} else {
|
||||
tietue$proportionsIt <- proportionsIt
|
||||
tietue$pvalue <- uskottavuus; # Added by Jing
|
||||
tietue$mixtureType <- 'admix'
|
||||
tietue$admixnpops <- npops
|
||||
save(tietue, file=filename)
|
||||
}
|
||||
}
|
||||
}
|
||||
9
R/find.R
Normal file
9
R/find.R
Normal file
|
|
@ -0,0 +1,9 @@
|
|||
#' @title Find indices and values of nonzero elements
|
||||
#' @description Emulates behavior of `find`
|
||||
find <- function(x) {
|
||||
if (is.logical(x)) {
|
||||
return(which(x))
|
||||
} else {
|
||||
return(which(x > 0))
|
||||
}
|
||||
}
|
||||
17
R/inputdlg.R
Normal file
17
R/inputdlg.R
Normal file
|
|
@ -0,0 +1,17 @@
|
|||
#' @title Gather user input
|
||||
#' @description Replicates the functionality of the homonymous function in Matlab (sans dialog box)
|
||||
#' @param prompt Text field with user instructions
|
||||
#' @param dim number of dimensions in the answwers
|
||||
#' @param definput default value of the input
|
||||
#' @export
|
||||
inputdlg <- function(prompt, definput=NULL, dims=1) {
|
||||
if (!is.null(definput)) {
|
||||
prompt <- append(prompt, paste0(" (default: ", definput, ")"))
|
||||
}
|
||||
input_chr <- readline(paste0(prompt, ": "))
|
||||
if (input_chr == "") input_chr <- definput
|
||||
input_chr_or_num <- tryCatch(
|
||||
as.numeric(input_chr), warning = function(w) input_chr
|
||||
)
|
||||
return(input_chr_or_num)
|
||||
}
|
||||
15
R/sortrows.R
Normal file
15
R/sortrows.R
Normal file
|
|
@ -0,0 +1,15 @@
|
|||
#' @title Sort rows of matrix or table
|
||||
#' @description Emulates the behavior of the `sortrows` function on Matlab
|
||||
#' @param A matrix
|
||||
#' @param column ordering column
|
||||
sortrows <- function(A, column = 1) {
|
||||
if (length(column) == 1) {
|
||||
new_row_order <- order(A[, column])
|
||||
} else if (length(column) == 2) {
|
||||
new_row_order <- order(A[, column[1]], A[, column[2]])
|
||||
} else {
|
||||
stop("Not yet implemented for 2+ tie-breakers")
|
||||
}
|
||||
A_reordered <- A[new_row_order, ]
|
||||
return(A_reordered)
|
||||
}
|
||||
121
R/viewPartition.R
Normal file
121
R/viewPartition.R
Normal file
|
|
@ -0,0 +1,121 @@
|
|||
viewPartition <- function(osuudet, popnames, COUNTS = matrix(0, 0, 0)) {
|
||||
|
||||
npops <- size(COUNTS, 3)
|
||||
nind <- size(osuudet,1)
|
||||
|
||||
# TODO: translate if necessary. Remove if this function won't be used
|
||||
# disp(['Number of populations: ' num2str(npops)]);
|
||||
# if npops>30
|
||||
# disp(' ');
|
||||
# disp('Figure can be drawn only if the number of populations');
|
||||
# disp('is less or equal to 30.');
|
||||
# disp(' ');
|
||||
# return;
|
||||
# end
|
||||
|
||||
|
||||
# varit = givecolors(npops);
|
||||
# korkeinviiva = 1.05;
|
||||
# pieninarvo = -korkeinviiva;
|
||||
|
||||
|
||||
# h0 = figure;
|
||||
# set(h0, 'NumberTitle', 'off'); %image_figure; %Muutettu
|
||||
# tiedot.popnames = popnames;
|
||||
# tiedot.info = osuudet;
|
||||
# set(h0,'UserData',tiedot);
|
||||
|
||||
# set(gca, 'Xlim', [-.5 ,nind+.5], 'YLim', [pieninarvo ,korkeinviiva], ...
|
||||
# 'XTick', [], 'XTickLabel', [], 'YTick', [], 'YTickLabel', []);
|
||||
|
||||
# for i=1:nind
|
||||
|
||||
# if any(osuudet(i,:)>0)
|
||||
# cumOsuudet = cumsum(osuudet(i,:));
|
||||
|
||||
# % Pylv<6C><76>n piirt<72>minen
|
||||
# for j=1:npops
|
||||
# if j==1
|
||||
# if cumOsuudet(1)>0
|
||||
# h0 =patch([i-1, i, i, i-1], [0, 0, cumOsuudet(1), cumOsuudet(1)], varit(j,:));
|
||||
# set(h0,'EdgeColor','none'); % Midevaa varten kommentoitava!
|
||||
# end
|
||||
# else
|
||||
# if (cumOsuudet(j)>cumOsuudet(j-1))
|
||||
# h0 = patch([i-1, i, i, i-1], [cumOsuudet(j-1), cumOsuudet(j-1), ...
|
||||
# cumOsuudet(j), cumOsuudet(j)], varit(j,:));
|
||||
# set(h0,'EdgeColor','none'); % Midevaa varten kommentoitava!
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
|
||||
|
||||
|
||||
# if ~isempty(popnames)
|
||||
# npops = size(popnames,1);
|
||||
# for i=1:npops
|
||||
# firstInd = popnames{i,2};
|
||||
# line([firstInd-1, firstInd-1], [0,1], 'Color', 'k'); %Populaatioiden rajat
|
||||
|
||||
# if i<npops
|
||||
# x_paikka = popnames{i,2}-1+(popnames{i+1,2}-popnames{i,2})/2;
|
||||
# else
|
||||
# x_paikka = popnames{i,2}-1+(nind+1-popnames{i,2})/2;
|
||||
# end
|
||||
|
||||
# korkeuskerroin = pieninarvo / -0.2;
|
||||
# suhdekerroin = npops/6;
|
||||
# for letter_num = 1:length(popnames{i,1}{1})
|
||||
# letter= popnames{i,1}{1}(letter_num);%alter .004|
|
||||
# text(x_paikka+korjaus(letter)*suhdekerroin, ...
|
||||
# 0.0005*korkeuskerroin-0.02*letter_num*korkeuskerroin, ...
|
||||
# letter, 'Interpreter','none');
|
||||
# end
|
||||
# end
|
||||
# line([nind,nind],[0,1],'Color','k');
|
||||
# end
|
||||
}
|
||||
|
||||
korjaus <- function(letter) {
|
||||
if (any(letter %in% c('i', 'j', 'l', 'I'))) {
|
||||
extra <- 0.022
|
||||
} else if (any(letter == 'r')) {
|
||||
extra <- 0.016
|
||||
} else if (any(letter == 'k')) {
|
||||
extra <- 0.009
|
||||
} else if (any(letter == 'f')) {
|
||||
extra <- 0.013
|
||||
} else if (any(letter == 't')) {
|
||||
extra <- 0.014
|
||||
} else if (any(letter == 'w')) {
|
||||
extra <- -0.003
|
||||
} else {
|
||||
extra <- 0
|
||||
}
|
||||
return(extra)
|
||||
}
|
||||
|
||||
giveColors <- function(n) {
|
||||
if (n > 36) stop('Maximum number of colors 36')
|
||||
colors <- matrix(
|
||||
data = c(
|
||||
1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1,
|
||||
0.4, 0, 0, 0, 0.4, 0, 0, 0, 0.4, 0.4, 0.4, 0, 0.4, 0,
|
||||
0.4, 0, 0.4, 0.4, 0.2, 0, 0, 0, 0.2, 0, 0, 0, 0.2, 0.2,
|
||||
0.2, 0, 0.2, 0, 0.2, 0, 0.2, 0.2, 0.8, 0, 0, 0, 0.8, 0,
|
||||
0, 0, 0.8, 0.8, 0.8, 0, 0.8, 0, 0.8, 0, 0.8, 0.8,
|
||||
0.6, 0, 0, 0, 0.6, 0, 0, 0, 0.6, 0.6, 0.6, 0, 0.6, 0,
|
||||
0.6, 0, 0.6, 0.6, 0.6, 0.2, 0.4, 0.2, 0.4, 0.8, 0.8,
|
||||
0.4, 0.2, 0, 0.6, 0.2, 0.2, 0.8, 0.6, 0.5, 0.2, 0.1,
|
||||
0.6, 0.3, 0.1
|
||||
),
|
||||
ncol = 3,
|
||||
byrow = TRUE
|
||||
)
|
||||
colors = colors[1:n, ]
|
||||
# red; green; blue; yellow
|
||||
# RGB format: [red green blue]
|
||||
return(colors)
|
||||
}
|
||||
|
|
@ -8,8 +8,15 @@
|
|||
#' @note Actually works for any `x`, but there's no need to bother imposing
|
||||
#' validation controls here.
|
||||
zeros_or_ones <- function(n, x) {
|
||||
# Expanding n to length 2 if necessary
|
||||
if (length(n) == 1) n <- c(n, n)
|
||||
return(matrix(x, n[1], n[2]))
|
||||
|
||||
# Returning a matrix or an array
|
||||
if (length(n) == 2) {
|
||||
return(matrix(x, n[1], n[2]))
|
||||
} else {
|
||||
return(array(x, dim=n))
|
||||
}
|
||||
}
|
||||
|
||||
#' @title Matrix of zeros
|
||||
|
|
@ -17,8 +24,14 @@ zeros_or_ones <- function(n, x) {
|
|||
#' the `zeros()` function on Matlab
|
||||
#' @param n1 number of rows
|
||||
#' @param n2 number of columns
|
||||
zeros <- function(n1, n2 = n1) {
|
||||
return(zeros_or_ones(c(n1, n2), 0))
|
||||
#' @param ... extra dimensions
|
||||
zeros <- function(n1, n2 = n1, ...) {
|
||||
if (length(n1) == 1) {
|
||||
n <- c(n1, n2, ...)
|
||||
} else {
|
||||
n <- n1
|
||||
}
|
||||
return(zeros_or_ones(n, 0))
|
||||
}
|
||||
|
||||
#' @title Matrix of ones
|
||||
|
|
@ -26,6 +39,12 @@ zeros <- function(n1, n2 = n1) {
|
|||
#' the `ones()` function on Matlab
|
||||
#' @param n1 number of rows
|
||||
#' @param n2 number of columns
|
||||
ones <- function(n1, n2 = n1) {
|
||||
return(zeros_or_ones(c(n1, n2), 1))
|
||||
#' @param ... extra dimensions
|
||||
ones <- function(n1, n2 = n1, ...) {
|
||||
if (length(n1) == 1) {
|
||||
n <- c(n1, n2, ...)
|
||||
} else {
|
||||
n <- n1
|
||||
}
|
||||
return(zeros_or_ones(n, 1))
|
||||
}
|
||||
11
man/find.Rd
Normal file
11
man/find.Rd
Normal file
|
|
@ -0,0 +1,11 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/find.R
|
||||
\name{find}
|
||||
\alias{find}
|
||||
\title{Find indices and values of nonzero elements}
|
||||
\usage{
|
||||
find(x)
|
||||
}
|
||||
\description{
|
||||
Emulates behavior of `find`
|
||||
}
|
||||
18
man/inputdlg.Rd
Normal file
18
man/inputdlg.Rd
Normal file
|
|
@ -0,0 +1,18 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/inputdlg.R
|
||||
\name{inputdlg}
|
||||
\alias{inputdlg}
|
||||
\title{Gather user input}
|
||||
\usage{
|
||||
inputdlg(prompt, definput = NULL, dims = 1)
|
||||
}
|
||||
\arguments{
|
||||
\item{prompt}{Text field with user instructions}
|
||||
|
||||
\item{definput}{default value of the input}
|
||||
|
||||
\item{dim}{number of dimensions in the answwers}
|
||||
}
|
||||
\description{
|
||||
Replicates the functionality of the homonymous function in Matlab (sans dialog box)
|
||||
}
|
||||
|
|
@ -4,12 +4,14 @@
|
|||
\alias{ones}
|
||||
\title{Matrix of ones}
|
||||
\usage{
|
||||
ones(n1, n2 = n1)
|
||||
ones(n1, n2 = n1, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{n1}{number of rows}
|
||||
|
||||
\item{n2}{number of columns}
|
||||
|
||||
\item{...}{extra dimensions}
|
||||
}
|
||||
\description{
|
||||
wrapper of `zeros_or_ones()` that replicates the behavior of
|
||||
|
|
|
|||
16
man/sortrows.Rd
Normal file
16
man/sortrows.Rd
Normal file
|
|
@ -0,0 +1,16 @@
|
|||
% Generated by roxygen2: do not edit by hand
|
||||
% Please edit documentation in R/sortrows.R
|
||||
\name{sortrows}
|
||||
\alias{sortrows}
|
||||
\title{Sort rows of matrix or table}
|
||||
\usage{
|
||||
sortrows(A, column = 1)
|
||||
}
|
||||
\arguments{
|
||||
\item{A}{matrix}
|
||||
|
||||
\item{column}{ordering column}
|
||||
}
|
||||
\description{
|
||||
Emulates the behavior of the `sortrows` function on Matlab
|
||||
}
|
||||
|
|
@ -4,12 +4,14 @@
|
|||
\alias{zeros}
|
||||
\title{Matrix of zeros}
|
||||
\usage{
|
||||
zeros(n1, n2 = n1)
|
||||
zeros(n1, n2 = n1, ...)
|
||||
}
|
||||
\arguments{
|
||||
\item{n1}{number of rows}
|
||||
|
||||
\item{n2}{number of columns}
|
||||
|
||||
\item{...}{extra dimensions}
|
||||
}
|
||||
\description{
|
||||
wrapper of `zeros_or_ones()` that replicates the behavior of
|
||||
|
|
|
|||
|
|
@ -39,9 +39,11 @@ test_that("zeros and ones work as expected", {
|
|||
expect_equal(zeros(2), matrix(0, 2, 2))
|
||||
expect_equal(zeros(2, 1), matrix(0, 2, 1))
|
||||
expect_equal(zeros(1, 10), matrix(0, 1, 10))
|
||||
expect_equal(zeros(3, 2, 4), array(0, c(3, 2, 4)))
|
||||
expect_equal(ones(8), matrix(1, 8, 8))
|
||||
expect_equal(ones(5, 2), matrix(1, 5, 2))
|
||||
expect_equal(ones(2, 100), matrix(1, 2, 100))
|
||||
expect_equal(ones(3, 2, 4, 2), array(1, c(3, 2, 4, 2)))
|
||||
})
|
||||
|
||||
test_that("times works as expected", {
|
||||
|
|
@ -143,4 +145,19 @@ test_that("isempty works as expected", {
|
|||
expect_false(isempty(cat1))
|
||||
expect_true(isempty(cat2))
|
||||
expect_false(isempty(str1))
|
||||
})
|
||||
|
||||
test_that("find works as expected", {
|
||||
X <- matrix(c(1, 0, 2, 0, 1, 1, 0, 0, 4), 3, byrow=TRUE)
|
||||
Y <- seq(1, 19, 2)
|
||||
expect_equal(find(X), c(1, 5, 7, 8, 9))
|
||||
expect_equal(find(!X), c(2, 3, 4, 6))
|
||||
expect_equal(find(Y == 13), 7)
|
||||
})
|
||||
|
||||
test_that("sortrows works as expected", {
|
||||
mx <- matrix(c(3, 2, 2, 1, 1, 10, 0, pi), 4)
|
||||
expect_equal(sortrows(mx), matrix(c(1, 2, 2, 3, pi, 10, 0, 1), 4))
|
||||
expect_equal(sortrows(mx, 2), matrix(c(2, 3, 1, 2, 0, 1, pi, 10), 4))
|
||||
expect_equal(sortrows(mx, 1:2), mx[order(mx[, 1], mx[, 2]), ])
|
||||
})
|
||||
Loading…
Add table
Reference in a new issue