Merge branch 'issue-3' into develop
This commit is contained in:
commit
7e1ded69e6
4 changed files with 51 additions and 47 deletions
|
|
@ -1,6 +1,6 @@
|
|||
Package: rBAPS
|
||||
Title: Bayesian Analysis of Population Structure
|
||||
Version: 0.0.0.9012
|
||||
Version: 0.0.0.9013
|
||||
Date: 2020-11-09
|
||||
Authors@R:
|
||||
c(
|
||||
|
|
|
|||
|
|
@ -57,6 +57,7 @@ importFrom(matlab2r,isfield)
|
|||
importFrom(matlab2r,isspace)
|
||||
importFrom(matlab2r,max)
|
||||
importFrom(matlab2r,min)
|
||||
importFrom(matlab2r,nargin)
|
||||
importFrom(matlab2r,ones)
|
||||
importFrom(matlab2r,questdlg)
|
||||
importFrom(matlab2r,rand)
|
||||
|
|
|
|||
|
|
@ -1,51 +1,53 @@
|
|||
minimum_spanning_tree <- function(C1, C2) stop("needs translation")
|
||||
# function A = minimum_spanning_tree(C1, C2)
|
||||
# %
|
||||
# % Find the minimum spanning tree using Prim's algorithm.
|
||||
# % C1(i,j) is the primary cost of connecting i to j.
|
||||
# % C2(i,j) is the (optional) secondary cost of connecting i to j, used to break ties.
|
||||
# % We assume that absent edges have 0 cost.
|
||||
# % To find the maximum spanning tree, used -1*C.
|
||||
# % See Aho, Hopcroft & Ullman 1983, "Data structures and algorithms", p 237.
|
||||
minimum_spanning_tree <- function(C1, C2) {
|
||||
# Find the minimum spanning tree using Prim's algorithm.
|
||||
# C1(i, j) is the primary cost of connecting i to j.
|
||||
# C2(i, j) is the (optional) secondary cost of connecting i to j, used to break ties.
|
||||
# We assume that absent edges have 0 cost.
|
||||
# To find the maximum spanning tree, used - 1 * C.
|
||||
# See Aho, Hopcroft & Ullman 1983, "Data structures and algorithms", p 237.
|
||||
|
||||
# % Prim's is O(V^2). Kruskal's algorithm is O(E log E) and hence is more efficient
|
||||
# % for sparse graphs, but is implemented in terms of a priority queue.
|
||||
# Prim's is O(V^2). Kruskal's algorithm is O(E log E) and hence is more efficient
|
||||
# for sparse graphs, but is implemented in terms of a priority queue.
|
||||
|
||||
# % We partition the nodes into those in U and those not in U.
|
||||
# % closest(i) is the vertex in U that is closest to i in V-U.
|
||||
# % lowcost(i) is the cost of the edge (i, closest(i)), or infinity is i has been used.
|
||||
# % In Aho, they say C(i,j) should be "some appropriate large value" if the edge is missing.
|
||||
# % We set it to infinity.
|
||||
# % However, since lowcost is initialized from C, we must distinguish absent edges from used nodes.
|
||||
# We partition the nodes into those in U and those not in U.
|
||||
# closest(i) is the vertex in U that is closest to i in V - U.
|
||||
# lowcost(i) is the cost of the edge (i, closest(i)), or infinity is i has been used.
|
||||
# In Aho, they say C(i, j) should be "some appropriate large value" if (the edge is missing.) {
|
||||
# We set it to infinity.
|
||||
# However, since lowcost is initialized from C, we must distinguish absent edges from used nodes.
|
||||
|
||||
# n = length(C1);
|
||||
# if nargin==1, C2 = zeros(n); end
|
||||
# A = zeros(n);
|
||||
n <- length(C1)
|
||||
if (nargin() == 1) {
|
||||
C2 <- zeros(n)
|
||||
}
|
||||
A <- zeros(n)
|
||||
|
||||
# closest = ones(1,n);
|
||||
# used = zeros(1,n); % contains the members of U
|
||||
# used(1) = 1; % start with node 1
|
||||
# C1(find(C1==0))=inf;
|
||||
# C2(find(C2==0))=inf;
|
||||
# lowcost1 = C1(1,:);
|
||||
# lowcost2 = C2(1,:);
|
||||
closest <- ones(1, n)
|
||||
used <- zeros(1, n)# contains the members of U
|
||||
used[1] <- 1# start with node 1
|
||||
C1[find(C1 == 0)] <- Inf
|
||||
C2[find(C2 == 0)] <- Inf
|
||||
lowcost1 <- C1[1, ]
|
||||
lowcost2 <- C2[1, ]
|
||||
|
||||
# for i=2:n
|
||||
# ks = find(lowcost1==min(lowcost1));
|
||||
# k = ks(argmin(lowcost2(ks)));
|
||||
# A(k, closest(k)) = 1;
|
||||
# A(closest(k), k) = 1;
|
||||
# lowcost1(k) = inf;
|
||||
# lowcost2(k) = inf;
|
||||
# used(k) = 1;
|
||||
# NU = find(used==0);
|
||||
# for ji=1:length(NU)
|
||||
# for j=NU(ji)
|
||||
# if C1(k,j) < lowcost1(j)
|
||||
# lowcost1(j) = C1(k,j);
|
||||
# lowcost2(j) = C2(k,j);
|
||||
# closest(j) = k;
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
for (i in 2:n) {
|
||||
ks <- find(lowcost1 == min(lowcost1))
|
||||
k <- ks[argmin(lowcost2(ks))]
|
||||
A[k, closest[k]] <- 1
|
||||
A[closest[k], k] <- 1
|
||||
lowcost1[k] <- Inf
|
||||
lowcost2[k] <- Inf
|
||||
used[k] <- 1
|
||||
NU <- find(used == 0)
|
||||
for (ji in 1:length(NU)) {
|
||||
for (j in NU[ji]) {
|
||||
if (C1[k, j] < lowcost1[j]) {
|
||||
lowcost1[j] <- C1[k, j]
|
||||
lowcost2[j] <- C2[k, j]
|
||||
closest[j] <- k
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
return(A)
|
||||
}
|
||||
|
|
|
|||
|
|
@ -10,4 +10,5 @@
|
|||
#' size sortrows squeeze strcmp times zeros disp
|
||||
#' @importFrom stats runif
|
||||
#' @importFrom zeallot %<-%
|
||||
#' @importFrom matlab2r nargin
|
||||
NULL
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue