Documentation update

This commit is contained in:
Waldir Leoncio 2020-07-14 14:35:48 +02:00
parent e885081f1d
commit 854c120916
2 changed files with 1 additions and 123 deletions

View file

@ -17,6 +17,7 @@ export(inputdlg)
export(isfield)
export(laskeMuutokset4)
export(learn_simple_partition)
export(linkage)
export(logml2String)
export(lueGenePopData)
export(lueNimi)

View file

@ -832,75 +832,6 @@ greedyMix <- function(
# k = children(~t) - m;
# end
# %---------------------------------------------------------------------------------------
# function [Z, dist] = newGetDistances(data, rowsFromInd)
# ninds = max(data(:,end));
# nloci = size(data,2)-1;
# riviLkm = nchoosek(ninds,2);
# empties = find(data<0);
# data(empties)=0;
# data = uint8(data); % max(noalle) oltava <256
# pariTaulu = zeros(riviLkm,2);
# aPointer=1;
# for a=1:ninds-1
# pariTaulu(aPointer:aPointer+ninds-1-a,1) = ones(ninds-a,1)*a;
# pariTaulu(aPointer:aPointer+ninds-1-a,2) = (a+1:ninds)';
# aPointer = aPointer+ninds-a;
# end
# eka = pariTaulu(:,ones(1,rowsFromInd));
# eka = eka * rowsFromInd;
# miinus = repmat(rowsFromInd-1 : -1 : 0, [riviLkm 1]);
# eka = eka - miinus;
# toka = pariTaulu(:,ones(1,rowsFromInd)*2);
# toka = toka * rowsFromInd;
# toka = toka - miinus;
# %eka = uint16(eka);
# %toka = uint16(toka);
# summa = zeros(riviLkm,1);
# vertailuja = zeros(riviLkm,1);
# clear pariTaulu; clear miinus;
# x = zeros(size(eka)); x = uint8(x);
# y = zeros(size(toka)); y = uint8(y);
# for j=1:nloci;
# for k=1:rowsFromInd
# x(:,k) = data(eka(:,k),j);
# y(:,k) = data(toka(:,k),j);
# end
# for a=1:rowsFromInd
# for b=1:rowsFromInd
# vertailutNyt = double(x(:,a)>0 & y(:,b)>0);
# vertailuja = vertailuja + vertailutNyt;
# lisays = (x(:,a)~=y(:,b) & vertailutNyt);
# summa = summa+double(lisays);
# end
# end
# end
# clear x; clear y; clear vertailutNyt;
# nollat = find(vertailuja==0);
# dist = zeros(length(vertailuja),1);
# dist(nollat) = 1;
# muut = find(vertailuja>0);
# dist(muut) = summa(muut)./vertailuja(muut);
# clear summa; clear vertailuja;
# Z = linkage(dist');
# %----------------------------------------------------------------------------------------
@ -946,60 +877,6 @@ greedyMix <- function(
# %----------------------------------------------------------------------------------------
# function Z = linkage(Y, method)
# [k, n] = size(Y);
# m = (1+sqrt(1+8*n))/2;
# if k ~= 1 | m ~= fix(m)
# error('The first input has to match the output of the PDIST function in size.');
# end
# if nargin == 1 % set default switch to be 'co'
# method = 'co';
# end
# method = lower(method(1:2)); % simplify the switch string.
# monotonic = 1;
# Z = zeros(m-1,3); % allocate the output matrix.
# N = zeros(1,2*m-1);
# N(1:m) = 1;
# n = m; % since m is changing, we need to save m in n.
# R = 1:n;
# for s = 1:(n-1)
# X = Y;
# [v, k] = min(X);
# i = floor(m+1/2-sqrt(m^2-m+1/4-2*(k-1)));
# j = k - (i-1)*(m-i/2)+i;
# Z(s,:) = [R(i) R(j) v]; % update one more row to the output matrix A
# I1 = 1:(i-1); I2 = (i+1):(j-1); I3 = (j+1):m; % these are temp variables.
# U = [I1 I2 I3];
# I = [I1.*(m-(I1+1)/2)-m+i i*(m-(i+1)/2)-m+I2 i*(m-(i+1)/2)-m+I3];
# J = [I1.*(m-(I1+1)/2)-m+j I2.*(m-(I2+1)/2)-m+j j*(m-(j+1)/2)-m+I3];
# switch method
# case 'si' %single linkage
# Y(I) = min(Y(I),Y(J));
# case 'av' % average linkage
# Y(I) = Y(I) + Y(J);
# case 'co' %complete linkage
# Y(I) = max(Y(I),Y(J));
# case 'ce' % centroid linkage
# K = N(R(i))+N(R(j));
# Y(I) = (N(R(i)).*Y(I)+N(R(j)).*Y(J)-(N(R(i)).*N(R(j))*v^2)./K)./K;
# case 'wa'
# Y(I) = ((N(R(U))+N(R(i))).*Y(I) + (N(R(U))+N(R(j))).*Y(J) - ...
# N(R(U))*v)./(N(R(i))+N(R(j))+N(R(U)));
# end
# J = [J i*(m-(i+1)/2)-m+j];
# Y(J) = []; % no need for the cluster information about j.
# % update m, N, R
# m = m-1;
# N(n+s) = N(R(i)) + N(R(j));
# R(i) = n+s;
# R(j:(n-1))=R((j+1):n);
# end
# %-----------------------------------------------------------------------------------
# function logml = ...
# initialCounts(partition, data, npops, rows, noalle, adjprior)