Documentation update
This commit is contained in:
parent
e885081f1d
commit
854c120916
2 changed files with 1 additions and 123 deletions
|
|
@ -17,6 +17,7 @@ export(inputdlg)
|
|||
export(isfield)
|
||||
export(laskeMuutokset4)
|
||||
export(learn_simple_partition)
|
||||
export(linkage)
|
||||
export(logml2String)
|
||||
export(lueGenePopData)
|
||||
export(lueNimi)
|
||||
|
|
|
|||
123
R/greedyMix.R
123
R/greedyMix.R
|
|
@ -832,75 +832,6 @@ greedyMix <- function(
|
|||
# k = children(~t) - m;
|
||||
# end
|
||||
|
||||
|
||||
# %---------------------------------------------------------------------------------------
|
||||
|
||||
# function [Z, dist] = newGetDistances(data, rowsFromInd)
|
||||
|
||||
# ninds = max(data(:,end));
|
||||
# nloci = size(data,2)-1;
|
||||
# riviLkm = nchoosek(ninds,2);
|
||||
|
||||
# empties = find(data<0);
|
||||
# data(empties)=0;
|
||||
# data = uint8(data); % max(noalle) oltava <256
|
||||
|
||||
# pariTaulu = zeros(riviLkm,2);
|
||||
# aPointer=1;
|
||||
# for a=1:ninds-1
|
||||
# pariTaulu(aPointer:aPointer+ninds-1-a,1) = ones(ninds-a,1)*a;
|
||||
# pariTaulu(aPointer:aPointer+ninds-1-a,2) = (a+1:ninds)';
|
||||
# aPointer = aPointer+ninds-a;
|
||||
# end
|
||||
|
||||
# eka = pariTaulu(:,ones(1,rowsFromInd));
|
||||
# eka = eka * rowsFromInd;
|
||||
# miinus = repmat(rowsFromInd-1 : -1 : 0, [riviLkm 1]);
|
||||
# eka = eka - miinus;
|
||||
|
||||
# toka = pariTaulu(:,ones(1,rowsFromInd)*2);
|
||||
# toka = toka * rowsFromInd;
|
||||
# toka = toka - miinus;
|
||||
|
||||
# %eka = uint16(eka);
|
||||
# %toka = uint16(toka);
|
||||
|
||||
# summa = zeros(riviLkm,1);
|
||||
# vertailuja = zeros(riviLkm,1);
|
||||
|
||||
# clear pariTaulu; clear miinus;
|
||||
|
||||
# x = zeros(size(eka)); x = uint8(x);
|
||||
# y = zeros(size(toka)); y = uint8(y);
|
||||
|
||||
# for j=1:nloci;
|
||||
|
||||
# for k=1:rowsFromInd
|
||||
# x(:,k) = data(eka(:,k),j);
|
||||
# y(:,k) = data(toka(:,k),j);
|
||||
# end
|
||||
|
||||
# for a=1:rowsFromInd
|
||||
# for b=1:rowsFromInd
|
||||
# vertailutNyt = double(x(:,a)>0 & y(:,b)>0);
|
||||
# vertailuja = vertailuja + vertailutNyt;
|
||||
# lisays = (x(:,a)~=y(:,b) & vertailutNyt);
|
||||
# summa = summa+double(lisays);
|
||||
# end
|
||||
# end
|
||||
# end
|
||||
|
||||
# clear x; clear y; clear vertailutNyt;
|
||||
# nollat = find(vertailuja==0);
|
||||
# dist = zeros(length(vertailuja),1);
|
||||
# dist(nollat) = 1;
|
||||
# muut = find(vertailuja>0);
|
||||
# dist(muut) = summa(muut)./vertailuja(muut);
|
||||
# clear summa; clear vertailuja;
|
||||
|
||||
# Z = linkage(dist');
|
||||
|
||||
|
||||
# %----------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
|
@ -946,60 +877,6 @@ greedyMix <- function(
|
|||
# %----------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
# function Z = linkage(Y, method)
|
||||
# [k, n] = size(Y);
|
||||
# m = (1+sqrt(1+8*n))/2;
|
||||
# if k ~= 1 | m ~= fix(m)
|
||||
# error('The first input has to match the output of the PDIST function in size.');
|
||||
# end
|
||||
# if nargin == 1 % set default switch to be 'co'
|
||||
# method = 'co';
|
||||
# end
|
||||
# method = lower(method(1:2)); % simplify the switch string.
|
||||
# monotonic = 1;
|
||||
# Z = zeros(m-1,3); % allocate the output matrix.
|
||||
# N = zeros(1,2*m-1);
|
||||
# N(1:m) = 1;
|
||||
# n = m; % since m is changing, we need to save m in n.
|
||||
# R = 1:n;
|
||||
# for s = 1:(n-1)
|
||||
# X = Y;
|
||||
# [v, k] = min(X);
|
||||
# i = floor(m+1/2-sqrt(m^2-m+1/4-2*(k-1)));
|
||||
# j = k - (i-1)*(m-i/2)+i;
|
||||
# Z(s,:) = [R(i) R(j) v]; % update one more row to the output matrix A
|
||||
# I1 = 1:(i-1); I2 = (i+1):(j-1); I3 = (j+1):m; % these are temp variables.
|
||||
# U = [I1 I2 I3];
|
||||
# I = [I1.*(m-(I1+1)/2)-m+i i*(m-(i+1)/2)-m+I2 i*(m-(i+1)/2)-m+I3];
|
||||
# J = [I1.*(m-(I1+1)/2)-m+j I2.*(m-(I2+1)/2)-m+j j*(m-(j+1)/2)-m+I3];
|
||||
|
||||
# switch method
|
||||
# case 'si' %single linkage
|
||||
# Y(I) = min(Y(I),Y(J));
|
||||
# case 'av' % average linkage
|
||||
# Y(I) = Y(I) + Y(J);
|
||||
# case 'co' %complete linkage
|
||||
# Y(I) = max(Y(I),Y(J));
|
||||
# case 'ce' % centroid linkage
|
||||
# K = N(R(i))+N(R(j));
|
||||
# Y(I) = (N(R(i)).*Y(I)+N(R(j)).*Y(J)-(N(R(i)).*N(R(j))*v^2)./K)./K;
|
||||
# case 'wa'
|
||||
# Y(I) = ((N(R(U))+N(R(i))).*Y(I) + (N(R(U))+N(R(j))).*Y(J) - ...
|
||||
# N(R(U))*v)./(N(R(i))+N(R(j))+N(R(U)));
|
||||
# end
|
||||
# J = [J i*(m-(i+1)/2)-m+j];
|
||||
# Y(J) = []; % no need for the cluster information about j.
|
||||
|
||||
# % update m, N, R
|
||||
# m = m-1;
|
||||
# N(n+s) = N(R(i)) + N(R(j));
|
||||
# R(i) = n+s;
|
||||
# R(j:(n-1))=R((j+1):n);
|
||||
# end
|
||||
|
||||
|
||||
# %-----------------------------------------------------------------------------------
|
||||
|
||||
# function logml = ...
|
||||
# initialCounts(partition, data, npops, rows, noalle, adjprior)
|
||||
|
||||
|
|
|
|||
Loading…
Add table
Reference in a new issue