function independent_parallel(options) % INDEPENDENT_PARALLEL is the command line version of the baps partition with % independent models. % Input: options is a struct generated by parallel.m %-------------------------------------------------------------------------- %- Syntax check out %-------------------------------------------------------------------------- outp = [options.outputMat '.txt']; inp = options.dataFile; if strcmp(options.fixedK, 'yes') fixedK = 1; else fixedK = 0; end %-------------------------------------------------------------------------- %- Get data file location %-------------------------------------------------------------------------- switch options.dataType case 'numeric' %------------------------------------------------------------------ %- Get name and index file location %------------------------------------------------------------------ try data = load(options.dataFile); catch disp('*** ERROR: Incorrect numerical text data.'); return end ninds = testaaOnkoKunnollinenBapsData(data); %TESTAUS if (ninds==0) disp('*** ERROR: Incorrect numerical text data.'); return; end if ~isempty(options.nameFile) && ~isempty(options.indexFile) popnames = initPopNames(options.nameFile{1}, options.indexFile{1}); else popnames = []; end [data, rowsFromInd, alleleCodes, noalle, adjprior, priorTerm] = handleData(data); [Z,dist] = newGetDistances(data,rowsFromInd); case 'genepop' kunnossa = testaaGenePopData(options.dataFile); if kunnossa == 0 return end [data,popnames] = lueGenePopData(options.dataFile); [data, rowsFromInd, alleleCodes, noalle, adjprior, priorTerm] = handleData(data); [Z,dist] = newGetDistances(data,rowsFromInd); case 'matlab' struct_array = load(options.dataFile); if isfield(struct_array,'c') %Matlab versio c = struct_array.c; if ~isfield(c,'dist') disp('*** ERROR: Incorrect matlab format'); return end elseif isfield(struct_array,'dist') %Mideva versio c = struct_array; else disp('*** ERROR: Incorrect matlab format'); return; end data = double(c.data); rowsFromInd = c.rowsFromInd; alleleCodes = c.alleleCodes; noalle = c.noalle; adjprior = c.adjprior; priorTerm = c.priorTerm; dist = c.dist; popnames = c.popnames; Z = c.Z; clear c; otherwise error('*** ERROR: data type is not specified or unknown.'); end % --------------------------------------------------------- % - Stochastic search algorithm % --------------------------------------------------------- global PARTITION; global COUNTS; global SUMCOUNTS; global POP_LOGML; clearGlobalVars; c.data=data; c.noalle = noalle; c.adjprior = adjprior; c.priorTerm = priorTerm; c.dist=dist; c.Z=Z; c.rowsFromInd = rowsFromInd; ninds = length(unique(data(:,end))); ekat = (1:rowsFromInd:ninds*rowsFromInd)'; c.rows = [ekat ekat+rowsFromInd-1]; npopstext = []; npopstextExtra = options.initialK; if length(npopstextExtra)>=255 npopstextExtra = npopstextExtra(1:255); npopstext = [npopstext ' ' npopstextExtra]; teksti = 'The input field length limit (255 characters) was reached. Input more values: '; else % ----------------------------------------------------- % Set the limit of the input value. % Modified by Jing Tang, 30.12.2005 if max(npopstextExtra) > size(data,1) error('Initial K larger than the sample size are not accepted. '); else npopstext = [npopstext ' ' num2str(npopstextExtra)]; end end clear teksti; if isempty(npopstext) || length(npopstext)==1 return else npopsTaulu = str2num(npopstext); ykkoset = find(npopsTaulu==1); npopsTaulu(ykkoset) = []; % Mikäli ykkösi?annettu ylärajaksi, ne poistetaan. if isempty(npopsTaulu) return end clear ykkoset; end if fixedK % Only the first value of npopsTaulu is used npops = npopsTaulu(1); nruns = length(npopsTaulu); [logml, npops, partitionSummary]=indMix_fixK(c,npops,nruns,1); else [logml, npops, partitionSummary]=indMix(c,npopsTaulu,1); end if logml==1 return end data = noIndex(data,noalle); changesInLogml = writeMixtureInfo(logml, rowsFromInd, data, adjprior, priorTerm, ... outp,inp,partitionSummary, popnames, fixedK); viewMixPartition(PARTITION, popnames); if exist('baps4_output.baps','file') copyfile('baps4_output.baps',outp) delete('baps4_output.baps') end % The logml is saved for parallel computing c.logml = logml; c.changesInLogml = changesInLogml; % this variable stores the change of likelihoods. c.PARTITION = PARTITION; c.COUNTS = COUNTS; c.SUMCOUNTS = SUMCOUNTS; c.alleleCodes = alleleCodes; c.adjprior = adjprior; c.popnames = popnames; c.rowsFromInd = rowsFromInd; c.data = data; c.npops = npops; c.noalle = noalle; c.mixtureType = 'mix'; fprintf(1,'Saving the result...') try % save(options.outputMat, 'c'); save(options.outputMat, 'c', '-v7.3'); % added by Lu Cheng, 08.06.2012 fprintf(1,'Finished.\n'); catch display('*** ERROR in saving the result.'); end % --------------------------------------------------------- % - Subfunctions % --------------------------------------------------------- %------------------------------------------------------------------------------------- function clearGlobalVars global COUNTS; COUNTS = []; global SUMCOUNTS; SUMCOUNTS = []; global PARTITION; PARTITION = []; global POP_LOGML; POP_LOGML = []; %------------------------------------------------------------------------------------- function rows = computeRows(rowsFromInd, inds, ninds) % On annettu yksilöt inds. Funktio palauttaa vektorin, joka % sisältää niiden rivien numerot, jotka sisältävät yksilöiden % dataa. rows = inds(:, ones(1,rowsFromInd)); rows = rows*rowsFromInd; miinus = repmat(rowsFromInd-1 : -1 : 0, [ninds 1]); rows = rows - miinus; rows = reshape(rows', [1,rowsFromInd*ninds]); %-------------------------------------------------------------------------- function [partitionSummary, added] = addToSummary(logml, partitionSummary, worstIndex) % Tiedetään, ett?annettu logml on isompi kuin huonoin arvo % partitionSummary taulukossa. Jos partitionSummary:ss?ei viel?ole % annettua logml arvoa, niin lisätään worstIndex:in kohtaan uusi logml ja % nykyist?partitiota vastaava nclusters:in arvo. Muutoin ei tehd?mitään. global PARTITION; apu = find(abs(partitionSummary(:,2)-logml)<1e-5); if isempty(apu) % Nyt löydetty partitio ei ole viel?kirjattuna summaryyn. npops = length(unique(PARTITION)); partitionSummary(worstIndex,1) = npops; partitionSummary(worstIndex,2) = logml; added = 1; else added = 0; end %-------------------------------------------------------------------------- function [suurin, i2] = arvoSeuraavaTila(muutokset, logml) % Suorittaa yksilön seuraavan tilan arvonnan y = logml + muutokset; % siirron jälkeiset logml:t y = y - max(y); y = exp(y); summa = sum(y); y = y/summa; y = cumsum(y); i2 = rand_disc(y); % uusi kori suurin = muutokset(i2); %-------------------------------------------------------------------------------------- function svar=rand_disc(CDF) %returns an index of a value from a discrete distribution using inversion method slump=rand; har=find(CDF>slump); svar=har(1); %------------------------------------------------------------------------------------- function updateGlobalVariables(ind, i2, rowsFromInd, diffInCounts, ... adjprior, priorTerm) % Suorittaa globaalien muuttujien muutokset, kun yksil?ind % on siirretään koriin i2. global PARTITION; global COUNTS; global SUMCOUNTS; global POP_LOGML; i1 = PARTITION(ind); PARTITION(ind)=i2; COUNTS(:,:,i1) = COUNTS(:,:,i1) - diffInCounts; COUNTS(:,:,i2) = COUNTS(:,:,i2) + diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:) - sum(diffInCounts); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:) + sum(diffInCounts); POP_LOGML([i1 i2]) = computePopulationLogml([i1 i2], adjprior, priorTerm); %--------------------------------------------------------------------------------- function updateGlobalVariables2( ... i1, i2, rowsFromInd, diffInCounts, adjprior, priorTerm) % Suorittaa globaalien muuttujien muutokset, kun kaikki % korissa i1 olevat yksilöt siirretään koriin i2. global PARTITION; global COUNTS; global SUMCOUNTS; global POP_LOGML; inds = find(PARTITION==i1); PARTITION(inds) = i2; COUNTS(:,:,i1) = COUNTS(:,:,i1) - diffInCounts; COUNTS(:,:,i2) = COUNTS(:,:,i2) + diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:) - sum(diffInCounts); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:) + sum(diffInCounts); POP_LOGML(i1) = 0; POP_LOGML(i2) = computePopulationLogml(i2, adjprior, priorTerm); %------------------------------------------------------------------------------------ function updateGlobalVariables3(muuttuvat, rowsFromInd, diffInCounts, ... adjprior, priorTerm, i2) % Suorittaa globaalien muuttujien päivitykset, kun yksilöt 'muuttuvat' % siirretään koriin i2. Ennen siirtoa yksilöiden on kuuluttava samaan % koriin. global PARTITION; global COUNTS; global SUMCOUNTS; global POP_LOGML; i1 = PARTITION(muuttuvat(1)); PARTITION(muuttuvat) = i2; COUNTS(:,:,i1) = COUNTS(:,:,i1) - diffInCounts; COUNTS(:,:,i2) = COUNTS(:,:,i2) + diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:) - sum(diffInCounts); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:) + sum(diffInCounts); POP_LOGML([i1 i2]) = computePopulationLogml([i1 i2], adjprior, priorTerm); %---------------------------------------------------------------------- function inds = returnInOrder(inds, pop, rowsFromInd, data, adjprior, priorTerm) % Palauttaa yksilöt järjestyksess?siten, ett?ensimmäisen?on % se, jonka poistaminen populaatiosta pop nostaisi logml:n % arvoa eniten. global COUNTS; global SUMCOUNTS; ninds = length(inds); apuTaulu = [inds, zeros(ninds,1)]; for i=1:ninds ind = inds(i); rows = (ind-1)*rowsFromInd+1 : ind*rowsFromInd; diffInCounts = computeDiffInCounts(rows, size(COUNTS,1), size(COUNTS,2), data); diffInSumCounts = sum(diffInCounts); COUNTS(:,:,pop) = COUNTS(:,:,pop)-diffInCounts; SUMCOUNTS(pop,:) = SUMCOUNTS(pop,:)-diffInSumCounts; apuTaulu(i, 2) = computePopulationLogml(pop, adjprior, priorTerm); COUNTS(:,:,pop) = COUNTS(:,:,pop)+diffInCounts; SUMCOUNTS(pop,:) = SUMCOUNTS(pop,:)+diffInSumCounts; end apuTaulu = sortrows(apuTaulu,2); inds = apuTaulu(ninds:-1:1,1); %------------------------------------------------------------------------------------ function [muutokset, diffInCounts] = ... laskeMuutokset(ind, rowsFromInd, data, adjprior, priorTerm) % Palauttaa npops*1 taulun, jossa i:s alkio kertoo, mik?olisi % muutos logml:ss? mikäli yksil?ind siirretään koriin i. % diffInCounts on poistettava COUNTS:in siivusta i1 ja lisättäv? % COUNTS:in siivuun i2, mikäli muutos toteutetaan. global COUNTS; global SUMCOUNTS; global PARTITION; global POP_LOGML; npops = size(COUNTS,3); muutokset = zeros(npops,1); i1 = PARTITION(ind); i1_logml = POP_LOGML(i1); rows = (ind-1)*rowsFromInd+1 : ind*rowsFromInd; diffInCounts = computeDiffInCounts(rows, size(COUNTS,1), size(COUNTS,2), data); diffInSumCounts = sum(diffInCounts); COUNTS(:,:,i1) = COUNTS(:,:,i1)-diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)-diffInSumCounts; new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm); COUNTS(:,:,i1) = COUNTS(:,:,i1)+diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)+diffInSumCounts; i2 = [1:i1-1 , i1+1:npops]; i2_logml = POP_LOGML(i2); COUNTS(:,:,i2) = COUNTS(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)+repmat(diffInSumCounts,[npops-1 1]); new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm); COUNTS(:,:,i2) = COUNTS(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)-repmat(diffInSumCounts,[npops-1 1]); muutokset(i2) = new_i1_logml - i1_logml ... + new_i2_logml - i2_logml; %------------------------------------------------------------------------------------ function [muutokset, diffInCounts] = laskeMuutokset2( ... i1, rowsFromInd, data, adjprior, priorTerm) % Palauttaa npops*1 taulun, jossa i:s alkio kertoo, mik?olisi % muutos logml:ss? mikäli korin i1 kaikki yksilöt siirretään % koriin i. global COUNTS; global SUMCOUNTS; global PARTITION; global POP_LOGML; npops = size(COUNTS,3); muutokset = zeros(npops,1); i1_logml = POP_LOGML(i1); inds = find(PARTITION==i1); ninds = length(inds); if ninds==0 diffInCounts = zeros(size(COUNTS,1), size(COUNTS,2)); return; end rows = computeRows(rowsFromInd, inds, ninds); diffInCounts = computeDiffInCounts(rows, size(COUNTS,1), size(COUNTS,2), data); diffInSumCounts = sum(diffInCounts); COUNTS(:,:,i1) = COUNTS(:,:,i1)-diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)-diffInSumCounts; new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm); COUNTS(:,:,i1) = COUNTS(:,:,i1)+diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)+diffInSumCounts; i2 = [1:i1-1 , i1+1:npops]; i2_logml = POP_LOGML(i2); COUNTS(:,:,i2) = COUNTS(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)+repmat(diffInSumCounts,[npops-1 1]); new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm); COUNTS(:,:,i2) = COUNTS(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)-repmat(diffInSumCounts,[npops-1 1]); muutokset(i2) = new_i1_logml - i1_logml ... + new_i2_logml - i2_logml; %------------------------------------------------------------------------------------ function muutokset = laskeMuutokset3(T2, inds2, rowsFromInd, ... data, adjprior, priorTerm, i1) % Palauttaa length(unique(T2))*npops taulun, jossa (i,j):s alkio % kertoo, mik?olisi muutos logml:ss? jos populaation i1 osapopulaatio % inds2(find(T2==i)) siirretään koriin j. global COUNTS; global SUMCOUNTS; global PARTITION; global POP_LOGML; npops = size(COUNTS,3); npops2 = length(unique(T2)); muutokset = zeros(npops2, npops); i1_logml = POP_LOGML(i1); for pop2 = 1:npops2 inds = inds2(find(T2==pop2)); ninds = length(inds); if ninds>0 rows = computeRows(rowsFromInd, inds, ninds); diffInCounts = computeDiffInCounts(rows, size(COUNTS,1), size(COUNTS,2), data); diffInSumCounts = sum(diffInCounts); COUNTS(:,:,i1) = COUNTS(:,:,i1)-diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)-diffInSumCounts; new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm); COUNTS(:,:,i1) = COUNTS(:,:,i1)+diffInCounts; SUMCOUNTS(i1,:) = SUMCOUNTS(i1,:)+diffInSumCounts; i2 = [1:i1-1 , i1+1:npops]; i2_logml = POP_LOGML(i2)'; COUNTS(:,:,i2) = COUNTS(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)+repmat(diffInSumCounts,[npops-1 1]); new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm)'; COUNTS(:,:,i2) = COUNTS(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]); SUMCOUNTS(i2,:) = SUMCOUNTS(i2,:)-repmat(diffInSumCounts,[npops-1 1]); muutokset(pop2,i2) = new_i1_logml - i1_logml ... + new_i2_logml - i2_logml; end end %------------------------------------------------------------------------------------ function muutokset = laskeMuutokset5(inds, rowsFromInd, data, adjprior, ... priorTerm, i1, i2) % Palauttaa length(inds)*1 taulun, jossa i:s alkio kertoo, mik?olisi % muutos logml:ss? mikäli yksil?i vaihtaisi koria i1:n ja i2:n välill? global COUNTS; global SUMCOUNTS; global PARTITION; global POP_LOGML; ninds = length(inds); muutokset = zeros(ninds,1); i1_logml = POP_LOGML(i1); i2_logml = POP_LOGML(i2); for i = 1:ninds ind = inds(i); if PARTITION(ind)==i1 pop1 = i1; %mist? pop2 = i2; %mihin else pop1 = i2; pop2 = i1; end rows = (ind-1)*rowsFromInd+1 : ind*rowsFromInd; diffInCounts = computeDiffInCounts(rows, size(COUNTS,1), size(COUNTS,2), data); diffInSumCounts = sum(diffInCounts); COUNTS(:,:,pop1) = COUNTS(:,:,pop1)-diffInCounts; SUMCOUNTS(pop1,:) = SUMCOUNTS(pop1,:)-diffInSumCounts; COUNTS(:,:,pop2) = COUNTS(:,:,pop2)+diffInCounts; SUMCOUNTS(pop2,:) = SUMCOUNTS(pop2,:)+diffInSumCounts; PARTITION(ind) = pop2; new_logmls = computePopulationLogml([i1 i2], adjprior, priorTerm); muutokset(i) = sum(new_logmls); COUNTS(:,:,pop1) = COUNTS(:,:,pop1)+diffInCounts; SUMCOUNTS(pop1,:) = SUMCOUNTS(pop1,:)+diffInSumCounts; COUNTS(:,:,pop2) = COUNTS(:,:,pop2)-diffInCounts; SUMCOUNTS(pop2,:) = SUMCOUNTS(pop2,:)-diffInSumCounts; PARTITION(ind) = pop1; end muutokset = muutokset - i1_logml - i2_logml; %-------------------------------------------------------------------------- function diffInCounts = computeDiffInCounts(rows, max_noalle, nloci, data) % Muodostaa max_noalle*nloci taulukon, jossa on niiden alleelien % lukumäärät (vastaavasti kuin COUNTS:issa), jotka ovat data:n % riveill?rows. diffInCounts = zeros(max_noalle, nloci); for i=rows row = data(i,:); notEmpty = find(row>=0); if length(notEmpty)>0 diffInCounts(row(notEmpty) + (notEmpty-1)*max_noalle) = ... diffInCounts(row(notEmpty) + (notEmpty-1)*max_noalle) + 1; end end %------------------------------------------------------------------------------------ function popLogml = computePopulationLogml(pops, adjprior, priorTerm) % Palauttaa length(pops)*1 taulukon, jossa on laskettu korikohtaiset % logml:t koreille, jotka on määritelty pops-muuttujalla. global COUNTS; global SUMCOUNTS; x = size(COUNTS,1); y = size(COUNTS,2); z = length(pops); popLogml = ... squeeze(sum(sum(reshape(... gammaln(repmat(adjprior,[1 1 length(pops)]) + COUNTS(:,:,pops)) ... ,[x y z]),1),2)) - sum(gammaln(1+SUMCOUNTS(pops,:)),2) - priorTerm; %----------------------------------------------------------------------------------- function npops = poistaTyhjatPopulaatiot(npops) % Poistaa tyhjentyneet populaatiot COUNTS:ista ja % SUMCOUNTS:ista. Päivittää npops:in ja PARTITION:in. global COUNTS; global SUMCOUNTS; global PARTITION; notEmpty = find(any(SUMCOUNTS,2)); COUNTS = COUNTS(:,:,notEmpty); SUMCOUNTS = SUMCOUNTS(notEmpty,:); for n=1:length(notEmpty) apu = find(PARTITION==notEmpty(n)); PARTITION(apu)=n; end npops = length(notEmpty); %---------------------------------------------------------------------------------- %Seuraavat kolme funktiota liittyvat alkupartition muodostamiseen. function initial_partition=admixture_initialization(data_matrix,nclusters,Z) size_data=size(data_matrix); nloci=size_data(2)-1; n=max(data_matrix(:,end)); T=cluster_own(Z,nclusters); initial_partition=zeros(size_data(1),1); for i=1:n kori=T(i); here=find(data_matrix(:,end)==i); for j=1:length(here) initial_partition(here(j),1)=kori; end end function T = cluster_own(Z,nclust) true=logical(1); false=logical(0); maxclust = nclust; % Start of algorithm m = size(Z,1)+1; T = zeros(m,1); % maximum number of clusters based on inconsistency if m <= maxclust T = (1:m)'; elseif maxclust==1 T = ones(m,1); else clsnum = 1; for k = (m-maxclust+1):(m-1) i = Z(k,1); % left tree if i <= m % original node, no leafs T(i) = clsnum; clsnum = clsnum + 1; elseif i < (2*m-maxclust+1) % created before cutoff, search down the tree T = clusternum(Z, T, i-m, clsnum); clsnum = clsnum + 1; end i = Z(k,2); % right tree if i <= m % original node, no leafs T(i) = clsnum; clsnum = clsnum + 1; elseif i < (2*m-maxclust+1) % created before cutoff, search down the tree T = clusternum(Z, T, i-m, clsnum); clsnum = clsnum + 1; end end end function T = clusternum(X, T, k, c) m = size(X,1)+1; while(~isempty(k)) % Get the children of nodes at this level children = X(k,1:2); children = children(:); % Assign this node number to leaf children t = (children<=m); T(children(t)) = c; % Move to next level k = children(~t) - m; end %--------------------------------------------------------------------------------------- function [newData, rowsFromInd, alleleCodes, noalle, adjprior, priorTerm] = ... handleData(raw_data) % Alkuperäisen datan viimeinen sarake kertoo, milt?yksilölt? % kyseinen rivi on peräisin. Funktio tutkii ensin, ett?montako % rivi?maksimissaan on peräisin yhdelt?yksilölt? jolloin saadaan % tietää onko kyseess?haploidi, diploidi jne... Tämän jälkeen funktio % lisää tyhji?rivej?niille yksilöille, joilta on peräisin vähemmän % rivej?kuin maksimimäär? % Mikäli jonkin alleelin koodi on =0, funktio muuttaa tämän alleelin % koodi pienimmäksi koodiksi, joka isompi kuin mikään käytöss?oleva koodi. % Tämän jälkeen funktio muuttaa alleelikoodit siten, ett?yhden lokuksen j % koodit saavat arvoja välill?1,...,noalle(j). data = raw_data; nloci=size(raw_data,2)-1; dataApu = data(:,1:nloci); nollat = find(dataApu==0); if ~isempty(nollat) isoinAlleeli = max(max(dataApu)); dataApu(nollat) = isoinAlleeli+1; data(:,1:nloci) = dataApu; end dataApu = []; nollat = []; isoinAlleeli = []; noalle=zeros(1,nloci); alleelitLokuksessa = cell(nloci,1); for i=1:nloci alleelitLokuksessaI = unique(data(:,i)); alleelitLokuksessa{i,1} = alleelitLokuksessaI(find(alleelitLokuksessaI>=0)); noalle(i) = length(alleelitLokuksessa{i,1}); end alleleCodes = zeros(max(noalle),nloci); for i=1:nloci alleelitLokuksessaI = alleelitLokuksessa{i,1}; puuttuvia = max(noalle)-length(alleelitLokuksessaI); alleleCodes(:,i) = [alleelitLokuksessaI; zeros(puuttuvia,1)]; end for loc = 1:nloci for all = 1:noalle(loc) data(find(data(:,loc)==alleleCodes(all,loc)), loc)=all; end; end; nind = max(data(:,end)); nrows = size(data,1); ncols = size(data,2); rowsFromInd = zeros(nind,1); for i=1:nind rowsFromInd(i) = length(find(data(:,end)==i)); end maxRowsFromInd = max(rowsFromInd); a = -999; emptyRow = repmat(a, 1, ncols); lessThanMax = find(rowsFromInd < maxRowsFromInd); missingRows = maxRowsFromInd*nind - nrows; data = [data; zeros(missingRows, ncols)]; pointer = 1; for ind=lessThanMax' %Käy läpi ne yksilöt, joilta puuttuu rivej? miss = maxRowsFromInd-rowsFromInd(ind); % Tält?yksilölt?puuttuvien lkm. for j=1:miss rowToBeAdded = emptyRow; rowToBeAdded(end) = ind; data(nrows+pointer, :) = rowToBeAdded; pointer = pointer+1; end end data = sortrows(data, ncols); % Sorttaa yksilöiden mukaisesti newData = data; rowsFromInd = maxRowsFromInd; adjprior = zeros(max(noalle),nloci); priorTerm = 0; for j=1:nloci adjprior(:,j) = [repmat(1/noalle(j), [noalle(j),1]) ; ones(max(noalle)-noalle(j),1)]; priorTerm = priorTerm + noalle(j)*gammaln(1/noalle(j)); end %---------------------------------------------------------------------------------------- function [Z, dist] = newGetDistances(data, rowsFromInd) ninds = max(data(:,end)); nloci = size(data,2)-1; riviLkm = nchoosek(ninds,2); empties = find(data<0); data(empties)=0; data = uint8(data); % max(noalle) oltava <256 pariTaulu = zeros(riviLkm,2); aPointer=1; for a=1:ninds-1 pariTaulu(aPointer:aPointer+ninds-1-a,1) = ones(ninds-a,1)*a; pariTaulu(aPointer:aPointer+ninds-1-a,2) = (a+1:ninds)'; aPointer = aPointer+ninds-a; end eka = pariTaulu(:,ones(1,rowsFromInd)); eka = eka * rowsFromInd; miinus = repmat(rowsFromInd-1 : -1 : 0, [riviLkm 1]); eka = eka - miinus; toka = pariTaulu(:,ones(1,rowsFromInd)*2); toka = toka * rowsFromInd; toka = toka - miinus; %eka = uint16(eka); %toka = uint16(toka); summa = zeros(riviLkm,1); vertailuja = zeros(riviLkm,1); clear pariTaulu; clear miinus; x = zeros(size(eka)); x = uint8(x); y = zeros(size(toka)); y = uint8(y); for j=1:nloci; for k=1:rowsFromInd x(:,k) = data(eka(:,k),j); y(:,k) = data(toka(:,k),j); end for a=1:rowsFromInd for b=1:rowsFromInd vertailutNyt = double(x(:,a)>0 & y(:,b)>0); vertailuja = vertailuja + vertailutNyt; lisays = (x(:,a)~=y(:,b) & vertailutNyt); summa = summa+double(lisays); end end end clear x; clear y; clear vertailutNyt; nollat = find(vertailuja==0); dist = zeros(length(vertailuja),1); dist(nollat) = 1; muut = find(vertailuja>0); dist(muut) = summa(muut)./vertailuja(muut); clear summa; clear vertailuja; Z = linkage(dist'); %---------------------------------------------------------------------------------------- function [Z, distances]= getDistances(data_matrix,nclusters) %finds initial admixture clustering solution with nclusters clusters, uses simple mean Hamming distance %gives partition in 8-bit format %allocates all alleles of a single individual into the same basket %data_matrix contains #Loci+1 columns, last column indicate whose alleles are placed in each row, %i.e. ranges from 1 to #individuals. For diploids there are 2 rows per individual, for haploids only a single row %missing values are indicated by zeros in the partition and by negative integers in the data_matrix. size_data=size(data_matrix); nloci=size_data(2)-1; n=max(data_matrix(:,end)); distances=zeros(nchoosek(n,2),1); pointer=1; for i=1:n-1 i_data=data_matrix(find(data_matrix(:,end)==i),1:nloci); for j=i+1:n d_ij=0; j_data=data_matrix(find(data_matrix(:,end)==j),1:nloci); vertailuja = 0; for k=1:size(i_data,1) for l=1:size(j_data,1) here_i=find(i_data(k,:)>=0); here_j=find(j_data(l,:)>=0); here_joint=intersect(here_i,here_j); vertailuja = vertailuja + length(here_joint); d_ij = d_ij + length(find(i_data(k,here_joint)~=j_data(l,here_joint))); end end d_ij = d_ij / vertailuja; distances(pointer)=d_ij; pointer=pointer+1; end end Z=linkage(distances'); %---------------------------------------------------------------------------------------- function Z = linkage(Y, method) [k, n] = size(Y); m = (1+sqrt(1+8*n))/2; if k ~= 1 || m ~= fix(m) error('The first input has to match the output of the PDIST function in size.'); end if nargin == 1 % set default switch to be 'co' method = 'co'; end method = lower(method(1:2)); % simplify the switch string. monotonic = 1; Z = zeros(m-1,3); % allocate the output matrix. N = zeros(1,2*m-1); N(1:m) = 1; n = m; % since m is changing, we need to save m in n. R = 1:n; for s = 1:(n-1) X = Y; [v, k] = min(X); i = floor(m+1/2-sqrt(m^2-m+1/4-2*(k-1))); j = k - (i-1)*(m-i/2)+i; Z(s,:) = [R(i) R(j) v]; % update one more row to the output matrix A I1 = 1:(i-1); I2 = (i+1):(j-1); I3 = (j+1):m; % these are temp variables. U = [I1 I2 I3]; I = [I1.*(m-(I1+1)/2)-m+i i*(m-(i+1)/2)-m+I2 i*(m-(i+1)/2)-m+I3]; J = [I1.*(m-(I1+1)/2)-m+j I2.*(m-(I2+1)/2)-m+j j*(m-(j+1)/2)-m+I3]; switch method case 'si' %single linkage Y(I) = min(Y(I),Y(J)); case 'av' % average linkage Y(I) = Y(I) + Y(J); case 'co' %complete linkage Y(I) = max(Y(I),Y(J)); case 'ce' % centroid linkage K = N(R(i))+N(R(j)); Y(I) = (N(R(i)).*Y(I)+N(R(j)).*Y(J)-(N(R(i)).*N(R(j))*v^2)./K)./K; case 'wa' Y(I) = ((N(R(U))+N(R(i))).*Y(I) + (N(R(U))+N(R(j))).*Y(J) - ... N(R(U))*v)./(N(R(i))+N(R(j))+N(R(U))); end J = [J i*(m-(i+1)/2)-m+j]; Y(J) = []; % no need for the cluster information about j. % update m, N, R m = m-1; N(n+s) = N(R(i)) + N(R(j)); R(i) = n+s; R(j:(n-1))=R((j+1):n); end %----------------------------------------------------------------------------------- function popnames = initPopNames(nameFile, indexFile) %Palauttaa tyhjän, mikäli nimitiedosto ja indeksitiedosto % eivät olleet yht?pitki? popnames = []; indices = load(indexFile); fid = fopen(nameFile); if fid == -1 %File didn't exist msgbox('Loading of the population names was unsuccessful', ... 'Error', 'error'); return; end; line = fgetl(fid); counter = 1; while (line ~= -1) && ~isempty(line) names{counter} = line; line = fgetl(fid); counter = counter + 1; end; fclose(fid); if length(names) ~= length(indices) disp('The number of population names must be equal to the number of '); disp('entries in the file specifying indices of the first individuals of '); disp('each population.'); return; end popnames = cell(length(names), 2); for i = 1:length(names) popnames{i,1} = names(i); popnames{i,2} = indices(i); end %----------------------------------------------------------------------------------- function [sumcounts, counts, logml] = ... initialCounts(partition, data, npops, rowsFromInd, noalle) nloci=size(data,2); ninds = size(data,1)/rowsFromInd; counts = zeros(max(noalle),nloci,npops); sumcounts = zeros(npops,nloci); for i=1:npops for j=1:nloci havainnotLokuksessa = find(partition==i & data(:,j)>=0); sumcounts(i,j) = length(havainnotLokuksessa); for k=1:noalle(j) alleleCode = k; N_ijk = length(find(data(havainnotLokuksessa,j)==alleleCode)); counts(k,j,i) = N_ijk; end end end initializeGammaln(ninds, rowsFromInd, max(noalle)); logml = computeLogml(counts, sumcounts, noalle, data, rowsFromInd); %----------------------------------------------------------------------- function logml=computeLogml(counts, sumcounts, noalle, data, rowsFromInd) nloci = size(counts,2); npops = size(counts,3); adjnoalle = zeros(max(noalle),nloci); for j=1:nloci adjnoalle(1:noalle(j),j)=noalle(j); if noalle(j)0 fid = fopen(outPutFile,'w'); else fid = -1; diary('baps4_output.baps'); % save in text anyway. end dispLine; disp('RESULTS OF INDIVIDUAL LEVEL MIXTURE ANALYSIS:'); disp(['Data file: ' inputFile]); disp(['Model: independent']); disp(['Number of clustered individuals: ' ownNum2Str(ninds)]); disp(['Number of groups in optimal partition: ' ownNum2Str(npops)]); disp(['Log(marginal likelihood) of optimal partition: ' ownNum2Str(logml)]); disp(' '); if (fid ~= -1) fprintf(fid,'%s \n', ['RESULTS OF INDIVIDUAL LEVEL MIXTURE ANALYSIS:']); fprintf(fid,'\n'); fprintf(fid,'%s \n', ['Data file: ' inputFile]); fprintf(fid,'\n'); fprintf(fid,'%s \n', ['Number of clustered individuals: ' ownNum2Str(ninds)]); fprintf(fid,'\n'); fprintf(fid,'%s \n', ['Number of groups in optimal partition: ' ownNum2Str(npops)]); fprintf(fid,'\n'); fprintf(fid,'%s \n', ['Log(marginal likelihood) of optimal partition: ' ownNum2Str(logml)]); fprintf(fid,'\n'); end cluster_count = length(unique(PARTITION)); disp(['Best Partition: ']); if (fid ~= -1) fprintf(fid,'%s \n',['Best Partition: ']); fprintf(fid,'\n'); end for m=1:cluster_count indsInM = find(PARTITION==m); length_of_beginning = 11 + floor(log10(m)); cluster_size = length(indsInM); if names text = ['Cluster ' num2str(m) ': {' char(popnames{indsInM(1)})]; for k = 2:cluster_size text = [text ', ' char(popnames{indsInM(k)})]; end; else text = ['Cluster ' num2str(m) ': {' num2str(indsInM(1))]; for k = 2:cluster_size text = [text ', ' num2str(indsInM(k))]; end; end text = [text '}']; while length(text)>58 %Take one line and display it. new_line = takeLine(text,58); text = text(length(new_line)+1:end); disp(new_line); if (fid ~= -1) fprintf(fid,'%s \n',[new_line]); fprintf(fid,'\n'); end if length(text)>0 text = [blanks(length_of_beginning) text]; else text = []; end; end; if ~isempty(text) disp(text); if (fid ~= -1) fprintf(fid,'%s \n',[text]); fprintf(fid,'\n'); end end; end if npops > 1 disp(' '); disp(' '); disp('Changes in log(marginal likelihood) if indvidual i is moved to group j:'); if (fid ~= -1) fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n'); fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n'); fprintf(fid, '%s \n', ['Changes in log(marginal likelihood) if indvidual i is moved to group j:']); fprintf(fid, '\n'); end if names nameSizes = zeros(ninds,1); for i = 1:ninds nimi = char(popnames{i}); nameSizes(i) = length(nimi); end maxSize = max(nameSizes); maxSize = max(maxSize, 5); erotus = maxSize - 5; alku = blanks(erotus); ekarivi = [alku ' ind' blanks(6+erotus)]; else ekarivi = ' ind '; end for i = 1:cluster_count ekarivi = [ekarivi ownNum2Str(i) blanks(8-floor(log10(i)))]; end disp(ekarivi); if (fid ~= -1) fprintf(fid, '%s \n', [ekarivi]); fprintf(fid, '\n'); end %ninds = size(data,1)/rowsFromInd; changesInLogml = LOGDIFF'; for ind = 1:ninds %[muutokset, diffInCounts] = laskeMuutokset(ind, rowsFromInd, data, ... % adjprior, priorTerm); %changesInLogml(:,ind) = muutokset; muutokset = changesInLogml(:,ind); if names nimi = char(popnames{ind}); rivi = [blanks(maxSize - length(nimi)) nimi ':']; else rivi = [blanks(4-floor(log10(ind))) ownNum2Str(ind) ':']; end for j = 1:npops rivi = [rivi ' ' logml2String(omaRound(muutokset(j)))]; end disp(rivi); if (fid ~= -1) fprintf(fid, '%s \n', [rivi]); fprintf(fid, '\n'); end end disp(' '); disp(' '); disp('KL-divergence matrix in PHYLIP format:'); dist_mat = zeros(npops, npops); if (fid ~= -1) fprintf(fid, '%s \n', [' ']); %fprintf(fid, '\n'); fprintf(fid, '%s \n', [' ']); %fprintf(fid, '\n'); fprintf(fid, '%s \n', ['KL-divergence matrix in PHYLIP format:']); %fprintf(fid, '\n'); end maxnoalle = size(COUNTS,1); nloci = size(COUNTS,2); d = zeros(maxnoalle, nloci, npops); prior = adjprior; prior(find(prior==1))=0; nollia = find(all(prior==0)); %Lokukset, joissa oli havaittu vain yht?alleelia. prior(1,nollia)=1; for pop1 = 1:npops d(:,:,pop1) = (squeeze(COUNTS(:,:,pop1))+prior) ./ repmat(sum(squeeze(COUNTS(:,:,pop1))+prior),maxnoalle,1); %dist1(pop1) = (squeeze(COUNTS(:,:,pop1))+adjprior) ./ repmat((SUMCOUNTS(pop1,:)+adjprior), maxnoalle, 1); end % ekarivi = blanks(7); % for pop = 1:npops % ekarivi = [ekarivi num2str(pop) blanks(7-floor(log10(pop)))]; % end ekarivi = num2str(npops); disp(ekarivi); if (fid ~= -1) fprintf(fid, '%s \n', [ekarivi]); %fprintf(fid, '\n'); end for pop1 = 1:npops % rivi = [blanks(2-floor(log10(pop1))) num2str(pop1) ' ']; for pop2 = 1:pop1-1 dist1 = d(:,:,pop1); dist2 = d(:,:,pop2); div12 = sum(sum(dist1.*log2((dist1+10^-10) ./ (dist2+10^-10))))/nloci; div21 = sum(sum(dist2.*log2((dist2+10^-10) ./ (dist1+10^-10))))/nloci; div = (div12+div21)/2; % rivi = [rivi kldiv2str(div) ' ']; dist_mat(pop1,pop2) = div; end % disp(rivi); % if (fid ~= -1) % fprintf(fid, '%s \n', [rivi]); fprintf(fid, '\n'); % end end end dist_mat = dist_mat + dist_mat'; % make it symmetric for pop1 = 1:npops rivi = ['Cluster_' num2str(pop1) ' ']; for pop2 = 1:npops rivi = [rivi kldiv2str(dist_mat(pop1,pop2)) ' ']; end disp(rivi); if (fid ~= -1) fprintf(fid, '%s \n', [rivi]); %fprintf(fid, '\n'); end end disp(' '); disp(' '); disp('List of sizes of 10 best visited partitions and corresponding log(ml) values'); if (fid ~= -1) fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n'); fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n'); fprintf(fid, '%s \n', ['List of sizes of 10 best visited partitions and corresponding log(ml) values']); fprintf(fid, '\n'); end partitionSummary = sortrows(partitionSummary,2); partitionSummary = partitionSummary(size(partitionSummary,1):-1:1 , :); partitionSummary = partitionSummary(find(partitionSummary(:,2)>-1e49),:); if size(partitionSummary,1)>10 vikaPartitio = 10; else vikaPartitio = size(partitionSummary,1); end for part = 1:vikaPartitio line = [num2str(partitionSummary(part,1)) ' ' num2str(partitionSummary(part,2))]; disp(line); if (fid ~= -1) fprintf(fid, '%s \n', [line]); fprintf(fid, '\n'); end end if ~fixedK disp(' '); disp(' '); disp('Probabilities for number of clusters'); if (fid ~= -1) fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n'); fprintf(fid, '%s \n', [' ']); fprintf(fid, '\n'); fprintf(fid, '%s \n', ['Probabilities for number of clusters']); fprintf(fid, '\n'); end npopsTaulu = unique(partitionSummary(:,1)); len = length(npopsTaulu); probs = zeros(len,1); partitionSummary(:,2) = partitionSummary(:,2)-max(partitionSummary(:,2)); sumtn = sum(exp(partitionSummary(:,2))); for i=1:len npopstn = sum(exp(partitionSummary(find(partitionSummary(:,1)==npopsTaulu(i)),2))); probs(i) = npopstn / sumtn; end for i=1:len if probs(i)>1e-5 line = [num2str(npopsTaulu(i)) ' ' num2str(probs(i))]; disp(line); if (fid ~= -1) fprintf(fid, '%s \n', [line]); fprintf(fid, '\n'); end end end end if (fid ~= -1) fclose(fid); else diary off end %--------------------------------------------------------------- function dispLine disp('---------------------------------------------------'); %-------------------------------------------------------------- function num2 = omaRound(num) % Pyöristää luvun num 1 desimaalin tarkkuuteen num = num*10; num = round(num); num2 = num/10; %--------------------------------------------------------- function digit = palautaYks(num,yks) % palauttaa luvun num 10^yks termin kertoimen % string:in? % yks täytyy olla kokonaisluku, joka on % vähintään -1:n suuruinen. Pienemmill? % luvuilla tapahtuu jokin pyöristysvirhe. if yks>=0 digit = rem(num, 10^(yks+1)); digit = floor(digit/(10^yks)); else digit = num*10; digit = floor(rem(digit,10)); end digit = num2str(digit); function mjono = kldiv2str(div) mjono = ' '; if abs(div)<100 %Ei tarvita e-muotoa mjono(6) = num2str(rem(floor(div*1000),10)); mjono(5) = num2str(rem(floor(div*100),10)); mjono(4) = num2str(rem(floor(div*10),10)); mjono(3) = '.'; mjono(2) = num2str(rem(floor(div),10)); arvo = rem(floor(div/10),10); if arvo>0 mjono(1) = num2str(arvo); end else suurinYks = floor(log10(div)); mjono(6) = num2str(suurinYks); mjono(5) = 'e'; mjono(4) = palautaYks(abs(div),suurinYks-1); mjono(3) = '.'; mjono(2) = palautaYks(abs(div),suurinYks); end %-------------------------------------------------------------------- function newline = takeLine(description,width) %Returns one line from the description: line ends to the first %space after width:th mark. newLine = description(1:width); n = width+1; while ~isspace(description(n)) && n 1)); end %-------------------------------------------------------------------- function kunnossa = testaaGenePopData(tiedostonNimi) % kunnossa == 0, jos data ei ole kelvollinen genePop data. % Muussa tapauksessa kunnossa == 1. kunnossa = 0; fid = fopen(tiedostonNimi); line1 = fgetl(fid); %ensimmäinen rivi line2 = fgetl(fid); %toinen rivi line3 = fgetl(fid); %kolmas if (isequal(line1,-1) || isequal(line2,-1) || isequal(line3,-1)) disp('Incorrect file format 1168'); fclose(fid); return end if (testaaPop(line1)==1 || testaaPop(line2)==1) disp('Incorrect file format 1172'); fclose(fid); return end if testaaPop(line3)==1 %2 rivi tällöin lokusrivi nloci = rivinSisaltamienMjonojenLkm(line2); line4 = fgetl(fid); if isequal(line4,-1) disp('Incorrect file format 1180'); fclose(fid); return end if ~any(line4==',') % Rivin nelj?täytyy sisältää pilkku. disp('Incorrect file format 1185'); fclose(fid); return end pointer = 1; while ~isequal(line4(pointer),',') %Tiedetään, ett?pysähtyy pointer = pointer+1; end line4 = line4(pointer+1:end); %pilkun jälkeinen osa nloci2 = rivinSisaltamienMjonojenLkm(line4); if (nloci2~=nloci) disp('Incorrect file format 1195'); fclose(fid); return end else line = fgetl(fid); lineNumb = 4; while (testaaPop(line)~=1 && ~isequal(line,-1)) line = fgetl(fid); lineNumb = lineNumb+1; end if isequal(line,-1) disp('Incorrect file format 1206'); fclose(fid); return end nloci = lineNumb-2; line4 = fgetl(fid); %Eka rivi pop sanan jälkeen if isequal(line4,-1) disp('Incorrect file format 1212'); fclose(fid); return end if ~any(line4==',') % Rivin täytyy sisältää pilkku. disp('Incorrect file format 1217'); fclose(fid); return end pointer = 1; while ~isequal(line4(pointer),',') %Tiedetään, ett?pysähtyy. pointer = pointer+1; end line4 = line4(pointer+1:end); %pilkun jälkeinen osa nloci2 = rivinSisaltamienMjonojenLkm(line4); if (nloci2~=nloci) disp('Incorrect file format 1228'); fclose(fid); return end end kunnossa = 1; fclose(fid); %------------------------------------------------------ function [data, popnames] = lueGenePopData(tiedostonNimi) fid = fopen(tiedostonNimi); line = fgetl(fid); %ensimmäinen rivi line = fgetl(fid); %toinen rivi count = rivinSisaltamienMjonojenLkm(line); line = fgetl(fid); lokusRiveja = 1; while (testaaPop(line)==0) lokusRiveja = lokusRiveja+1; line = fgetl(fid); end if lokusRiveja>1 nloci = lokusRiveja; else nloci = count; end popnames = cell(10,2); data = zeros(100, nloci+1); nimienLkm=0; ninds=0; poimiNimi=1; digitFormat = -1; while line ~= -1 line = fgetl(fid); if poimiNimi==1 %Edellinen rivi oli 'pop' nimienLkm = nimienLkm+1; ninds = ninds+1; if nimienLkm>size(popnames,1); popnames = [popnames; cell(10,2)]; end nimi = lueNimi(line); if digitFormat == -1 digitFormat = selvitaDigitFormat(line); divider = 10^digitFormat; end popnames{nimienLkm, 1} = {nimi}; %Näin se on greedyMix:issäkin?!? popnames{nimienLkm, 2} = ninds; poimiNimi=0; data = addAlleles(data, ninds, line, divider); elseif testaaPop(line) poimiNimi = 1; elseif line ~= -1 ninds = ninds+1; data = addAlleles(data, ninds, line, divider); end end data = data(1:ninds*2,:); popnames = popnames(1:nimienLkm,:); fclose(fid); %-------------------------------------------------------- function data = addAlleles(data, ind, line, divider) % Lisaa BAPS-formaatissa olevaan datataulukkoon % yksilöä ind vastaavat rivit. Yksilön alleelit % luetaan genepop-formaatissa olevasta rivist? % line. Jos data on 3 digit formaatissa on divider=1000. % Jos data on 2 digit formaatissa on divider=100. nloci = size(data,2)-1; if size(data,1) < 2*ind data = [data; zeros(100,nloci+1)]; end k=1; merkki=line(k); while ~isequal(merkki,',') k=k+1; merkki=line(k); end line = line(k+1:end); clear k; clear merkki; alleeliTaulu = sscanf(line,'%d'); if length(alleeliTaulu)~=nloci disp('Incorrect data format.'); end for j=1:nloci ekaAlleeli = floor(alleeliTaulu(j)/divider); if ekaAlleeli==0 ekaAlleeli=-999; end tokaAlleeli = rem(alleeliTaulu(j),divider); if tokaAlleeli==0 tokaAlleeli=-999; end data(2*ind-1,j) = ekaAlleeli; data(2*ind,j) = tokaAlleeli; end data(2*ind-1,end) = ind; data(2*ind,end) = ind; %------------------------------------------------------ function count = rivinSisaltamienMjonojenLkm(line) % Palauttaa line:n sisältämien mjonojen lukumäärän. % Mjonojen väliss?täytyy olla välilyönti. count = 0; pit = length(line); tila = 0; %0, jos odotetaan välilyöntej? 1 jos odotetaan muita merkkej? for i=1:pit merkki = line(i); if (isspace(merkki) && tila==0) %Ei tehd?mitään. elseif (isspace(merkki) && tila==1) tila = 0; elseif (~isspace(merkki) && tila==0) tila = 1; count = count+1; elseif (~isspace(merkki) && tila==1) %Ei tehd?mitään end end %------------------------------------------------------- function nimi = lueNimi(line) %Palauttaa line:n alusta sen osan, joka on ennen pilkkua. n = 1; merkki = line(n); nimi = ''; while ~isequal(merkki,',') nimi = [nimi merkki]; n = n+1; merkki = line(n); end %------------------------------------------------------- function df = selvitaDigitFormat(line) % line on ensimmäinen pop-sanan jälkeinen rivi % Genepop-formaatissa olevasta datasta. funktio selvittää % rivin muodon perusteella, ovatko datan alleelit annettu % 2 vai 3 numeron avulla. n = 1; merkki = line(n); while ~isequal(merkki,',') n = n+1; merkki = line(n); end while ~any(merkki == '0123456789'); n = n+1; merkki = line(n); end numeroja = 0; while any(merkki == '0123456789'); numeroja = numeroja+1; n = n+1; merkki = line(n); end df = numeroja/2;