getDistances <- function(data_matrix, nclusters) { # %finds initial admixture clustering solution with nclusters clusters, uses simple mean Hamming distance # %gives partition in 8 - bit format # %allocates all alleles of a single individual into the same basket # %data_matrix contains #Loci + 1 columns, last column indicate whose alleles are placed in each row, # %i.e. ranges from 1 to #individuals. For diploids there are 2 rows per individual, for haploids only a single row # %missing values are indicated by zeros in the partition and by negative integers in the data_matrix. size_data <- size(data_matrix) nloci <- size_data[2] - 1 n <- base::max(data_matrix[, ncol(data_matrix)]) distances <- zeros(choose(n, 2), 1) pointer <- 1 for (i in 1:n - 1) { i_data <- data_matrix[ matlab2r::find(data_matrix[, ncol(data_matrix)] == i), 1:nloci ] for (j in (i + 1):n) { d_ij <- 0 j_data <- data_matrix[matlab2r::find(data_matrix[, ncol()] == j), 1:nloci] vertailuja <- 0 for (k in 1:size(i_data, 1)) { for (l in 1:size(j_data, 1)) { here_i <- matlab2r::find(i_data[k, ] >= 0) here_j <- matlab2r::find(j_data[l, ] >= 0) here_joint <- intersect(here_i, here_j) vertailuja <- vertailuja + length(here_joint) d_ij <- d_ij + length( matlab2r::find(i_data[k, here_joint] != j_data[l, here_joint]) ) } } d_ij <- d_ij / vertailuja distances[pointer] <- d_ij pointer <- pointer + 1 } } Z <- linkage(t(distances)) return(list(Z = Z, distances = distances)) }