ourMELONS/R/greedyMix.R
Waldir Leoncio 70ec460106 Fixed docs
2023-09-11 13:13:55 +02:00

77 lines
3.2 KiB
R

#' @title Clustering of individuals
#' @param data data file
#' @param format Data format. Format supported: "FASTA", "VCF" ,"BAM", "GenePop"
#' @param partitionCompare a list of partitions to compare
#' @param ninds number of individuals
#' @param npops number of populations
#' @param counts counts
#' @param sumcounts sumcounts
#' @param max_iter maximum number of iterations
#' @param alleleCodes allele codes
#' @param inp input file
#' @param popnames population names
#' @param fixedK if \code{TRUE}, the number of populations is fixed
#' @param verbose if \code{TRUE}, prints extra output information
#' @importFrom utils read.delim
#' @importFrom vcfR read.vcfR
#' @importFrom Rsamtools scanBam
#' @importFrom adegenet read.genepop .readExt
#' @references Samtools: a suite of programs for interacting
#' with high-throughput sequencing data. <http://www.htslib.org/>
#' @export
#' @examples
#' data <- system.file("extdata", "FASTA_clustering_haploid.fasta", package = "rBAPS")
#' greedyMix(data, "fasta")
greedyMix <- function(
data, format, partitionCompare = NULL, ninds = 1L, npops = 1L,
counts = NULL, sumcounts = NULL, max_iter = 100L, alleleCodes = NULL,
inp = NULL, popnames = NULL, fixedK = FALSE, verbose = FALSE
) {
# Importing and handling data ================================================
data <- importFile(data, format, verbose)
data <- handleData(data, tolower(format))
c <- list(
noalle = data[["noalle"]],
data = data[["newData"]],
adjprior = data[["adjprior"]],
priorTerm = data[["priorTerm"]],
rowsFromInd = data[["rowsFromInd"]]
)
# Comparing partitions =======================================================
if (!is.null(partitionCompare)) {
logmls <- comparePartitions(
c[["data"]], nrow(c[["data"]]), partitionCompare[["partitions"]], ninds,
c[["rowsFromInd"]], c[["noalle"]], c[["adjprior"]]
)
}
# Generating partition summary ===============================================
ekat <- seq(1L, c[["rowsFromInd"]], ninds * c[["rowsFromInd"]]) # ekat = (1:rowsFromInd:ninds*rowsFromInd)';
c[["rows"]] <- c(ekat, ekat + c[["rowsFromInd"]] - 1L) # c.rows = [ekat ekat+rowsFromInd-1]
logml_npops_partitionSummary <- indMixWrapper(c, npops, counts, sumcounts, max_iter, fixedK, verbose)
logml <- logml_npops_partitionSummary[["logml"]]
npops <- logml_npops_partitionSummary[["npops"]]
partitionSummary <- logml_npops_partitionSummary[["partitionSummary"]]
# Generating output object ===================================================
out <- list(
"alleleCodes" = alleleCodes, "adjprior" = c[["adjprior"]],
"popnames" = popnames, "rowsFromInd" = c[["rowsFromInd"]],
"data" = c[["data"]], "npops" = npops, "noalle" = c[["noalle"]],
"mixtureType" = "mix", "logml" = logml
)
if (logml == 1) {
return(out)
}
# Writing mixture info =======================================================
changesInLogml <- writeMixtureInfo(
logml, c[["rowsFromInd"]], c[["data"]], c[["adjprior"]], c[["priorTerm"]],
NULL, inp, partitionSummary, popnames, fixedK
)
# Updateing results ==========================================================
return(c(out, "changesInLogml" = changesInLogml))
}