ourMELONS/R/load_fasta.R
2023-08-09 10:54:48 +02:00

62 lines
2 KiB
R

#' load_fasta
#'
#' Loads a fasta file into matrix format ready for
#' running the hierBAPS algorithm.
#'
#' @param msa Either the location of a fasta file or ape DNAbin object containing the multiple sequence alignment data to be clustered
#' @param keep.singletons A logical indicating whether to consider singleton mutations in calculating the clusters
#'
#' @return A character matrix with filtered SNP data
#'
#' @examples
#' msa <- system.file("extdata", "seqs.fa", package = "rBAPS")
#' snp.matrix <- load_fasta(msa)
#' @author Gerry Tonkin-Hill, Waldir Leoncio
#' @seealso rhierbaps::load_fasta
#' @importFrom ape read.FASTA as.DNAbin
#' @export
load_fasta <- function(msa, keep.singletons = FALSE) {
# Check inputs
if (is(msa, "character")) {
if (!file.exists(msa)) stop("Invalid msa or the file does not exist!")
seqs <- ape::read.FASTA(msa)
} else if (is(msa, "matrix")) {
seqs <- ape::as.DNAbin(msa)
} else if (is(msa, "DNAbin")) {
seqs <- msa
} else {
stop("incorrect input for msa!")
}
if (!is.logical(keep.singletons)) stop("Invalid keep.singletons! Must be on of TRUE/FALSE.")
# Load sequences using ape. This does a lot of the checking for us.
seq_names <- labels(seqs)
seqs <- as.character(as.matrix(seqs))
rownames(seqs) <- seq_names
seqs[is.na(seqs)] <- "-"
# Validation -----------------------------------------------------------------
if (nrow(seqs) < 3) stop("Less than 3 sequences!")
if (any(!(as.vector(tolower(seqs)) %in% c("a", "c", "g", "t", "n", "-")))) {
warning("Characters not in acgtnACGTN- will be treated as missing (-)...")
}
# Remove conserved columns
conserved <- colSums(t(t(seqs) == seqs[1, ])) == nrow(seqs)
seqs <- seqs[, !conserved]
if (!keep.singletons) {
# remove singletons as they are uninformative in the algorithm
is_singleton <- apply(seqs, 2, function(x) {
tab <- table(x)
return(x %in% names(tab)[tab == 1])
})
seqs[is_singleton] <- "-"
}
# Convert gaps and unknowns to same symbol
seqs[seqs == "n"] <- "-"
return(seqs)
}