ourMELONS/R/randga.R
Waldir Leoncio fca9caa731 Restyled files
Ran through styler::style_dir() in the R and tests directories in preparation for #23.
2021-11-10 14:25:50 +01:00

58 lines
1.5 KiB
R

#' @title Generates random number from a Gamma distribution
#' @description Generates one random number from shape parameter a and rate parameter b
#' @param a shape
#' @param b rate
#' @return One realization of Gamma(a, b)
#' @details The generated random variable has mean a / b. It will be positively-skewed for small values, but converges to a symmetric distribution for very large numbers of a and b.
randga <- function(a, b) {
flag <- 0
if (a > 1) {
c1 <- a - 1
c2 <- (a - (1 / (6 * a))) / c1
c3 <- 2 / c1
c4 <- c3 + 2
c5 <- 1 / sqrt(a)
U1 <- 1
while (flag == 0) {
if (a <= 2.5) {
U1 <- rand()
U2 <- rand()
} else {
while (!(U1 > 0 & U1 < 1)) {
U1 <- rand()
U2 <- rand()
U1 <- U2 + c5 * (1 - 1.86 * U1)
}
}
W <- c2 * U2 / U1
if (c3 * U1 + W + (1 / W) <= c4) {
flag <- 1
g <- c1 * W / b
} else if (c3 * log(U1) - log(W) + W < 1) {
flag <- 1
g <- c1 * W / b
} else {
U1 <- -1
}
}
} else if (a == 1) {
g <- sum(-(1 / b) * log(rand(a, 1)))
} else {
while (flag == 0) {
U <- rand(2, 1)
if (U[1] > exp(1) / (a + exp(1))) {
g <- -log(((a + exp(1)) * (1 - U[1])) / (a * exp(1)))
if (U[2] <= g^(a - 1)) {
flag <- 1
}
} else {
g <- ((a + exp(1)) * U[1] / ((exp(1))^(1 / a)))
if (U[2] <= exp(-g)) {
flag <- 1
}
}
}
g <- g / b
}
return(g)
}