718 lines
No EOL
24 KiB
Matlab
718 lines
No EOL
24 KiB
Matlab
function [partition, counts, sumcounts] = initSpatialMixture(initData, ...
|
|
npops, Z, rowsFromInd, noalle, dist, adjprior, priorTerm);
|
|
% Etsii spatial mixturelle alkutilan baps 3.1:n ahneella algoritmilla.
|
|
|
|
global PARTITION_IN; global COUNTS_IN;
|
|
global SUMCOUNTS_IN; global POP_LOGML_IN;
|
|
|
|
data = initData(:,1:end-1);
|
|
initialPartition = admixture_initialization(initData, npops, Z);
|
|
|
|
[sumcounts, counts, logml] = ...
|
|
initialCounts(initialPartition, data, npops, rowsFromInd, noalle);
|
|
|
|
PARTITION_IN = initialPartition(1:rowsFromInd:end);
|
|
COUNTS_IN = counts; SUMCOUNTS_IN = sumcounts;
|
|
|
|
partition = PARTITION_IN;
|
|
return
|
|
|
|
POP_LOGML_IN = computePopulationLogml(1:npops, adjprior, priorTerm);
|
|
|
|
|
|
clear initialPartition; clear counts; clear sumcounts;
|
|
|
|
% PARHAAN MIXTURE-PARTITION_IN ETSIMINEN
|
|
roundTypes = [1 1]; %Ykkösvaiheen sykli kahteen kertaan.
|
|
ready = 0; vaihe = 1;
|
|
ninds = size(data,1)/rowsFromInd;
|
|
|
|
|
|
|
|
while ready ~= 1
|
|
muutoksia = 0;
|
|
|
|
for n = 1:length(roundTypes)
|
|
|
|
round = roundTypes(n);
|
|
kivaluku=0;
|
|
|
|
if round==0 | round==1 %Yksilön siirtäminen toiseen populaatioon.
|
|
inds = 1:ninds;
|
|
aputaulu = [inds' rand(ninds,1)];
|
|
aputaulu = sortrows(aputaulu,2);
|
|
inds = aputaulu(:,1)';
|
|
|
|
muutosNyt = 0;
|
|
for ind = inds
|
|
i1 = PARTITION_IN(ind);
|
|
[muutokset, diffInCounts] = laskeMuutokset(ind, rowsFromInd, ...
|
|
data, adjprior, priorTerm);
|
|
|
|
if round==1, [maxMuutos, i2] = max(muutokset); end
|
|
|
|
if (i1~=i2 & maxMuutos>1e-5)
|
|
% Tapahtui muutos
|
|
muutoksia = 1;
|
|
kivaluku = kivaluku+1;
|
|
updateGlobalVariables(ind, i2, rowsFromInd, diffInCounts,...
|
|
adjprior, priorTerm);
|
|
logml = logml+maxMuutos;
|
|
|
|
end
|
|
end
|
|
|
|
elseif round==2 %Populaation yhdistäminen toiseen.
|
|
maxMuutos = 0;
|
|
for pop = 1:npops
|
|
[muutokset, diffInCounts] = laskeMuutokset2(pop, rowsFromInd, ...
|
|
data, adjprior, priorTerm);
|
|
[isoin, indeksi] = max(muutokset);
|
|
if isoin>maxMuutos
|
|
maxMuutos = isoin;
|
|
i1 = pop;
|
|
i2 = indeksi;
|
|
diffInCountsBest = diffInCounts;
|
|
end
|
|
end
|
|
|
|
if maxMuutos>1e-5
|
|
muutoksia = 1;
|
|
updateGlobalVariables2(i1,i2,rowsFromInd, diffInCountsBest, ...
|
|
adjprior, priorTerm);
|
|
logml = logml + maxMuutos;
|
|
end
|
|
|
|
|
|
elseif round==3 | round==4 %Populaation jakaminen osiin.
|
|
maxMuutos = 0;
|
|
ninds = size(data,1)/rowsFromInd;
|
|
for pop = 1:npops
|
|
inds2 = find(PARTITION_IN==pop);
|
|
ninds2 = length(inds2);
|
|
if ninds2>5
|
|
dist2 = laskeOsaDist(inds2, dist, ninds);
|
|
Z2 = linkage(dist2');
|
|
if round==3
|
|
npops2 = min(20, floor(ninds2 / 5)); %Moneenko osaan jaetaan
|
|
elseif round==4
|
|
npops2 = 2;
|
|
end
|
|
T2 = cluster_own(Z2, npops2);
|
|
muutokset = laskeMuutokset3(T2, inds2, rowsFromInd, data, ...
|
|
adjprior, priorTerm, pop);
|
|
[isoin, indeksi] = max(muutokset(1:end));
|
|
if isoin>maxMuutos
|
|
maxMuutos = isoin;
|
|
muuttuvaPop2 = rem(indeksi,npops2);
|
|
if muuttuvaPop2==0, muuttuvaPop2 = npops2; end
|
|
muuttuvat = inds2(find(T2==muuttuvaPop2));
|
|
i2 = ceil(indeksi/npops2);
|
|
end
|
|
end
|
|
end
|
|
if maxMuutos>1e-5
|
|
muutoksia = 1;
|
|
rows = computeRows(rowsFromInd, muuttuvat, length(muuttuvat));
|
|
diffInCounts = computeDiffInCounts(rows, size(COUNTS_IN,1), ...
|
|
size(COUNTS_IN,2), data);
|
|
i1 = PARTITION_IN(muuttuvat(1));
|
|
updateGlobalVariables3(muuttuvat, rowsFromInd, diffInCounts, ...
|
|
adjprior, priorTerm, i2);
|
|
logml = logml + maxMuutos;
|
|
|
|
end
|
|
|
|
elseif round == 5 | round == 6
|
|
pop=0;
|
|
muutettu = 0;
|
|
poplogml = POP_LOGML_IN;
|
|
partition = PARTITION_IN;
|
|
counts = COUNTS_IN;
|
|
sumcounts = SUMCOUNTS_IN;
|
|
|
|
while (pop < npops & muutettu == 0)
|
|
pop = pop+1;
|
|
totalMuutos = 0;
|
|
inds = find(PARTITION_IN==pop);
|
|
if round == 5
|
|
aputaulu = [inds rand(length(inds),1)];
|
|
aputaulu = sortrows(aputaulu,2);
|
|
inds = aputaulu(:,1)';
|
|
elseif round == 6
|
|
inds = returnInOrder(inds, pop, rowsFromInd, data, adjprior, priorTerm);
|
|
end
|
|
|
|
i=0;
|
|
|
|
while (length(inds)>0 & i<length(inds))
|
|
i = i+1;
|
|
ind = inds(i);
|
|
[muutokset, diffInCounts] = laskeMuutokset(ind, rowsFromInd, ...
|
|
data, adjprior, priorTerm);
|
|
muutokset(pop) = -1e50; % Varmasti ei suurin!!!
|
|
[maxMuutos, i2] = max(muutokset);
|
|
updateGlobalVariables(ind, i2, rowsFromInd, diffInCounts,...
|
|
adjprior, priorTerm);
|
|
totalMuutos = totalMuutos+maxMuutos;
|
|
logml = logml+maxMuutos;
|
|
if round == 6
|
|
% Lopetetaan heti kun muutos on positiivinen.
|
|
if totalMuutos > 1e-5
|
|
i=length(inds);
|
|
end
|
|
end
|
|
end
|
|
|
|
if totalMuutos>1e-5
|
|
muutettu=1;
|
|
muutoksia = 1; % Ulompi kirjanpito.
|
|
else
|
|
% Missään vaiheessa tila ei parantunut.
|
|
% Perutaan kaikki muutokset.
|
|
PARTITION_IN = partition;
|
|
SUMCOUNTS_IN = sumcounts;
|
|
POP_LOGML_IN = poplogml;
|
|
COUNTS_IN = counts;
|
|
logml = logml - totalMuutos;
|
|
end
|
|
end
|
|
clear partition; clear sumcounts; clear counts; clear poplogml;
|
|
end
|
|
end
|
|
|
|
|
|
if muutoksia == 0
|
|
if vaihe==1
|
|
vaihe = 2;
|
|
elseif vaihe==2
|
|
vaihe = 3;
|
|
elseif vaihe==3
|
|
vaihe = 4;
|
|
elseif vaihe==4;
|
|
vaihe = 5;
|
|
elseif vaihe==5
|
|
ready = 1;
|
|
end
|
|
else
|
|
muutoksia = 0;
|
|
end
|
|
|
|
if ready==0
|
|
if vaihe==1
|
|
roundTypes=[1];
|
|
elseif vaihe==2
|
|
roundTypes = [2];
|
|
elseif vaihe==3
|
|
roundTypes=[5];
|
|
elseif vaihe==4
|
|
roundTypes=[4 3 1];
|
|
elseif vaihe
|
|
roundTypes=[6 2 3 4 1];
|
|
end
|
|
end
|
|
end
|
|
|
|
partition = PARTITION_IN;
|
|
counts = COUNTS_IN;
|
|
sumcounts = SUMCOUNTS_IN;
|
|
|
|
|
|
|
|
%-------------------------------------------------------------------------------------
|
|
|
|
function [sumcounts, counts, logml] = ...
|
|
initialCounts(partition, data, npops, rowsFromInd, noalle)
|
|
|
|
nloci=size(data,2);
|
|
ninds = size(data,1)/rowsFromInd;
|
|
|
|
counts = zeros(max(noalle),nloci,npops);
|
|
sumcounts = zeros(npops,nloci);
|
|
for i=1:npops
|
|
for j=1:nloci
|
|
havainnotLokuksessa = find(partition==i & data(:,j)>=0);
|
|
sumcounts(i,j) = length(havainnotLokuksessa);
|
|
for k=1:noalle(j)
|
|
alleleCode = k;
|
|
N_ijk = length(find(data(havainnotLokuksessa,j)==alleleCode));
|
|
counts(k,j,i) = N_ijk;
|
|
end
|
|
end
|
|
end
|
|
|
|
initializeGammaln(ninds, rowsFromInd, max(noalle));
|
|
|
|
logml = computeLogml(counts, sumcounts, noalle, data, rowsFromInd);
|
|
|
|
|
|
%-----------------------------------------------------------------------
|
|
|
|
|
|
function logml=computeLogml(counts, sumcounts, noalle, data, rowsFromInd)
|
|
nloci = size(counts,2);
|
|
npops = size(counts,3);
|
|
adjnoalle = zeros(max(noalle),nloci);
|
|
for j=1:nloci
|
|
adjnoalle(1:noalle(j),j)=noalle(j);
|
|
if (noalle(j)<max(noalle))
|
|
adjnoalle(noalle(j)+1:end,j)=1;
|
|
end
|
|
end
|
|
|
|
%logml2 = sum(sum(sum(gammaln(counts+repmat(adjprior,[1 1 npops]))))) ...
|
|
% - npops*sum(sum(gammaln(adjprior))) - ...
|
|
% sum(sum(gammaln(1+sumcounts)));
|
|
%logml = logml2;
|
|
|
|
global GAMMA_LN;
|
|
rowsInG = size(data,1)+rowsFromInd;
|
|
|
|
logml = sum(sum(sum(GAMMA_LN(counts+1 + repmat(rowsInG*(adjnoalle-1),[1 1 npops]))))) ...
|
|
- npops*sum(sum(GAMMA_LN(1, adjnoalle))) ...
|
|
-sum(sum(GAMMA_LN(sumcounts+1,1)));
|
|
|
|
|
|
%--------------------------------------------------------------------------
|
|
|
|
|
|
function initializeGammaln(ninds, rowsFromInd, maxAlleles)
|
|
%Alustaa GAMMALN muuttujan s.e. GAMMALN(i,j)=gammaln((i-1) + 1/j)
|
|
global GAMMA_LN;
|
|
GAMMA_LN = zeros((1+ninds)*rowsFromInd, maxAlleles);
|
|
for i=1:(ninds+1)*rowsFromInd
|
|
for j=1:maxAlleles
|
|
GAMMA_LN(i,j)=gammaln((i-1) + 1/j);
|
|
end
|
|
end
|
|
|
|
%--------------------------------------------------------------------------
|
|
%Seuraavat kolme funktiota liittyvat alkupartition muodostamiseen.
|
|
|
|
function initial_partition=admixture_initialization(data_matrix,nclusters,Z)
|
|
|
|
size_data=size(data_matrix);
|
|
nloci=size_data(2)-1;
|
|
n=max(data_matrix(:,end));
|
|
T=cluster_own(Z,nclusters);
|
|
initial_partition=zeros(size_data(1),1);
|
|
for i=1:n
|
|
kori=T(i);
|
|
here=find(data_matrix(:,end)==i);
|
|
for j=1:length(here)
|
|
initial_partition(here(j),1)=kori;
|
|
end
|
|
end
|
|
|
|
function T = cluster_own(Z,nclust)
|
|
true=logical(1);
|
|
false=logical(0);
|
|
maxclust = nclust;
|
|
% Start of algorithm
|
|
m = size(Z,1)+1;
|
|
T = zeros(m,1);
|
|
% maximum number of clusters based on inconsistency
|
|
if m <= maxclust
|
|
T = (1:m)';
|
|
elseif maxclust==1
|
|
T = ones(m,1);
|
|
else
|
|
clsnum = 1;
|
|
for k = (m-maxclust+1):(m-1)
|
|
i = Z(k,1); % left tree
|
|
if i <= m % original node, no leafs
|
|
T(i) = clsnum;
|
|
clsnum = clsnum + 1;
|
|
elseif i < (2*m-maxclust+1) % created before cutoff, search down the tree
|
|
T = clusternum(Z, T, i-m, clsnum);
|
|
clsnum = clsnum + 1;
|
|
end
|
|
i = Z(k,2); % right tree
|
|
if i <= m % original node, no leafs
|
|
T(i) = clsnum;
|
|
clsnum = clsnum + 1;
|
|
elseif i < (2*m-maxclust+1) % created before cutoff, search down the tree
|
|
T = clusternum(Z, T, i-m, clsnum);
|
|
clsnum = clsnum + 1;
|
|
end
|
|
end
|
|
end
|
|
|
|
function T = clusternum(X, T, k, c)
|
|
m = size(X,1)+1;
|
|
while(~isempty(k))
|
|
% Get the children of nodes at this level
|
|
children = X(k,1:2);
|
|
children = children(:);
|
|
|
|
% Assign this node number to leaf children
|
|
t = (children<=m);
|
|
T(children(t)) = c;
|
|
|
|
% Move to next level
|
|
k = children(~t) - m;
|
|
end
|
|
|
|
%--------------------------------------------------------------------------
|
|
|
|
function rows = computeRows(rowsFromInd, inds, ninds)
|
|
% On annettu yksilöt inds. Funktio palauttaa vektorin, joka
|
|
% sisältää niiden rivien numerot, jotka sisältävät yksilöiden
|
|
% dataa.
|
|
|
|
rows = inds(:, ones(1,rowsFromInd));
|
|
rows = rows*rowsFromInd;
|
|
miinus = repmat(rowsFromInd-1 : -1 : 0, [ninds 1]);
|
|
rows = rows - miinus;
|
|
rows = reshape(rows', [1,rowsFromInd*ninds]);
|
|
|
|
%-------------------------------------------------------------------------------------
|
|
|
|
|
|
function updateGlobalVariables(ind, i2, rowsFromInd, diffInCounts, ...
|
|
adjprior, priorTerm)
|
|
% Suorittaa globaalien muuttujien muutokset, kun yksilö ind
|
|
% on siirretään koriin i2.
|
|
|
|
global PARTITION_IN;
|
|
global COUNTS_IN;
|
|
global SUMCOUNTS_IN;
|
|
global POP_LOGML_IN;
|
|
|
|
i1 = PARTITION_IN(ind);
|
|
PARTITION_IN(ind)=i2;
|
|
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1) - diffInCounts;
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2) + diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:) - sum(diffInCounts);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:) + sum(diffInCounts);
|
|
|
|
POP_LOGML_IN([i1 i2]) = computePopulationLogml([i1 i2], adjprior, priorTerm);
|
|
|
|
|
|
%---------------------------------------------------------------------------------
|
|
|
|
|
|
function updateGlobalVariables2( ...
|
|
i1, i2, rowsFromInd, diffInCounts, adjprior, priorTerm);
|
|
% Suorittaa globaalien muuttujien muutokset, kun kaikki
|
|
% korissa i1 olevat yksilöt siirretään koriin i2.
|
|
|
|
global PARTITION_IN;
|
|
global COUNTS_IN;
|
|
global SUMCOUNTS_IN;
|
|
global POP_LOGML_IN;
|
|
|
|
inds = find(PARTITION_IN==i1);
|
|
PARTITION_IN(inds) = i2;
|
|
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1) - diffInCounts;
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2) + diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:) - sum(diffInCounts);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:) + sum(diffInCounts);
|
|
|
|
POP_LOGML_IN(i1) = 0;
|
|
POP_LOGML_IN(i2) = computePopulationLogml(i2, adjprior, priorTerm);
|
|
|
|
|
|
%------------------------------------------------------------------------------------
|
|
|
|
|
|
function updateGlobalVariables3(muuttuvat, rowsFromInd, diffInCounts, ...
|
|
adjprior, priorTerm, i2);
|
|
% Suorittaa globaalien muuttujien päivitykset, kun yksilöt 'muuttuvat'
|
|
% siirretään koriin i2. Ennen siirtoa yksilöiden on kuuluttava samaan
|
|
% koriin.
|
|
|
|
global PARTITION_IN;
|
|
global COUNTS_IN;
|
|
global SUMCOUNTS_IN;
|
|
global POP_LOGML_IN;
|
|
|
|
i1 = PARTITION_IN(muuttuvat(1));
|
|
PARTITION_IN(muuttuvat) = i2;
|
|
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1) - diffInCounts;
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2) + diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:) - sum(diffInCounts);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:) + sum(diffInCounts);
|
|
|
|
POP_LOGML_IN([i1 i2]) = computePopulationLogml([i1 i2], adjprior, priorTerm);
|
|
|
|
|
|
%----------------------------------------------------------------------
|
|
|
|
|
|
function inds = returnInOrder(inds, pop, rowsFromInd, data, adjprior, priorTerm)
|
|
% Palauttaa yksilöt järjestyksessä siten, että ensimmäisenä on
|
|
% se, jonka poistaminen populaatiosta pop nostaisi logml:n
|
|
% arvoa eniten.
|
|
|
|
global COUNTS_IN; global SUMCOUNTS_IN;
|
|
ninds = length(inds);
|
|
apuTaulu = [inds, zeros(ninds,1)];
|
|
|
|
for i=1:ninds
|
|
ind = inds(i);
|
|
rows = (ind-1)*rowsFromInd+1 : ind*rowsFromInd;
|
|
diffInCounts = computeDiffInCounts(rows, size(COUNTS_IN,1), size(COUNTS_IN,2), data);
|
|
diffInSumCounts = sum(diffInCounts);
|
|
|
|
COUNTS_IN(:,:,pop) = COUNTS_IN(:,:,pop)-diffInCounts;
|
|
SUMCOUNTS_IN(pop,:) = SUMCOUNTS_IN(pop,:)-diffInSumCounts;
|
|
apuTaulu(i, 2) = computePopulationLogml(pop, adjprior, priorTerm);
|
|
COUNTS_IN(:,:,pop) = COUNTS_IN(:,:,pop)+diffInCounts;
|
|
SUMCOUNTS_IN(pop,:) = SUMCOUNTS_IN(pop,:)+diffInSumCounts;
|
|
end
|
|
apuTaulu = sortrows(apuTaulu,2);
|
|
inds = apuTaulu(ninds:-1:1,1);
|
|
|
|
%------------------------------------------------------------------------------------
|
|
|
|
|
|
function [muutokset, diffInCounts] = ...
|
|
laskeMuutokset(ind, rowsFromInd, data, adjprior, priorTerm)
|
|
% Palauttaa npops*1 taulun, jossa i:s alkio kertoo, mikä olisi
|
|
% muutos logml:ssä, mikäli yksilö ind siirretään koriin i.
|
|
% diffInCounts on poistettava COUNTS_IN:in siivusta i1 ja lisättävä
|
|
% COUNTS_IN:in siivuun i2, mikäli muutos toteutetaan.
|
|
|
|
global COUNTS_IN; global SUMCOUNTS_IN;
|
|
global PARTITION_IN; global POP_LOGML_IN;
|
|
npops = size(COUNTS_IN,3);
|
|
muutokset = zeros(npops,1);
|
|
|
|
i1 = PARTITION_IN(ind);
|
|
i1_logml = POP_LOGML_IN(i1);
|
|
|
|
rows = (ind-1)*rowsFromInd+1 : ind*rowsFromInd;
|
|
diffInCounts = computeDiffInCounts(rows, size(COUNTS_IN,1), size(COUNTS_IN,2), data);
|
|
diffInSumCounts = sum(diffInCounts);
|
|
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1)-diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:)-diffInSumCounts;
|
|
new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm);
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1)+diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:)+diffInSumCounts;
|
|
|
|
i2 = [1:i1-1 , i1+1:npops];
|
|
i2_logml = POP_LOGML_IN(i2);
|
|
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:)+repmat(diffInSumCounts,[npops-1 1]);
|
|
new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm);
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:)-repmat(diffInSumCounts,[npops-1 1]);
|
|
|
|
muutokset(i2) = new_i1_logml - i1_logml ...
|
|
+ new_i2_logml - i2_logml;
|
|
|
|
|
|
%------------------------------------------------------------------------------------
|
|
|
|
|
|
function [muutokset, diffInCounts] = laskeMuutokset2( ...
|
|
i1, rowsFromInd, data, adjprior, priorTerm);
|
|
% Palauttaa npops*1 taulun, jossa i:s alkio kertoo, mikä olisi
|
|
% muutos logml:ssä, mikäli korin i1 kaikki yksilöt siirretään
|
|
% koriin i.
|
|
|
|
global COUNTS_IN; global SUMCOUNTS_IN;
|
|
global PARTITION_IN; global POP_LOGML_IN;
|
|
npops = size(COUNTS_IN,3);
|
|
muutokset = zeros(npops,1);
|
|
|
|
i1_logml = POP_LOGML_IN(i1);
|
|
|
|
inds = find(PARTITION_IN==i1);
|
|
ninds = length(inds);
|
|
|
|
if ninds==0
|
|
diffInCounts = zeros(size(COUNTS_IN,1), size(COUNTS_IN,2));
|
|
return;
|
|
end
|
|
|
|
rows = computeRows(rowsFromInd, inds, ninds);
|
|
|
|
diffInCounts = computeDiffInCounts(rows, size(COUNTS_IN,1), size(COUNTS_IN,2), data);
|
|
diffInSumCounts = sum(diffInCounts);
|
|
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1)-diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:)-diffInSumCounts;
|
|
new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm);
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1)+diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:)+diffInSumCounts;
|
|
|
|
i2 = [1:i1-1 , i1+1:npops];
|
|
i2_logml = POP_LOGML_IN(i2);
|
|
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:)+repmat(diffInSumCounts,[npops-1 1]);
|
|
new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm);
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:)-repmat(diffInSumCounts,[npops-1 1]);
|
|
|
|
muutokset(i2) = new_i1_logml - i1_logml ...
|
|
+ new_i2_logml - i2_logml;
|
|
|
|
|
|
|
|
%------------------------------------------------------------------------------------
|
|
|
|
|
|
function muutokset = laskeMuutokset3(T2, inds2, rowsFromInd, ...
|
|
data, adjprior, priorTerm, i1)
|
|
% Palauttaa length(unique(T2))*npops taulun, jossa (i,j):s alkio
|
|
% kertoo, mikä olisi muutos logml:ssä, jos populaation i1 osapopulaatio
|
|
% inds2(find(T2==i)) siirretään koriin j.
|
|
|
|
global COUNTS_IN; global SUMCOUNTS_IN;
|
|
global PARTITION_IN; global POP_LOGML_IN;
|
|
npops = size(COUNTS_IN,3);
|
|
npops2 = length(unique(T2));
|
|
muutokset = zeros(npops2, npops);
|
|
|
|
i1_logml = POP_LOGML_IN(i1);
|
|
|
|
for pop2 = 1:npops2
|
|
inds = inds2(find(T2==pop2));
|
|
ninds = length(inds);
|
|
if ninds>0
|
|
rows = computeRows(rowsFromInd, inds, ninds);
|
|
diffInCounts = computeDiffInCounts(rows, size(COUNTS_IN,1), size(COUNTS_IN,2), data);
|
|
diffInSumCounts = sum(diffInCounts);
|
|
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1)-diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:)-diffInSumCounts;
|
|
new_i1_logml = computePopulationLogml(i1, adjprior, priorTerm);
|
|
COUNTS_IN(:,:,i1) = COUNTS_IN(:,:,i1)+diffInCounts;
|
|
SUMCOUNTS_IN(i1,:) = SUMCOUNTS_IN(i1,:)+diffInSumCounts;
|
|
|
|
i2 = [1:i1-1 , i1+1:npops];
|
|
i2_logml = POP_LOGML_IN(i2)';
|
|
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2)+repmat(diffInCounts, [1 1 npops-1]);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:)+repmat(diffInSumCounts,[npops-1 1]);
|
|
new_i2_logml = computePopulationLogml(i2, adjprior, priorTerm)';
|
|
COUNTS_IN(:,:,i2) = COUNTS_IN(:,:,i2)-repmat(diffInCounts, [1 1 npops-1]);
|
|
SUMCOUNTS_IN(i2,:) = SUMCOUNTS_IN(i2,:)-repmat(diffInSumCounts,[npops-1 1]);
|
|
|
|
muutokset(pop2,i2) = new_i1_logml - i1_logml ...
|
|
+ new_i2_logml - i2_logml;
|
|
end
|
|
end
|
|
|
|
|
|
%------------------------------------------------------------------------------------
|
|
|
|
function diffInCounts = computeDiffInCounts(rows, max_noalle, nloci, data)
|
|
% Muodostaa max_noalle*nloci taulukon, jossa on niiden alleelien
|
|
% lukumäärät (vastaavasti kuin COUNTS_IN:issa), jotka ovat data:n
|
|
% riveillä rows.
|
|
|
|
diffInCounts = zeros(max_noalle, nloci);
|
|
for i=rows
|
|
row = data(i,:);
|
|
notEmpty = find(row>=0);
|
|
|
|
if length(notEmpty)>0
|
|
diffInCounts(row(notEmpty) + (notEmpty-1)*max_noalle) = ...
|
|
diffInCounts(row(notEmpty) + (notEmpty-1)*max_noalle) + 1;
|
|
end
|
|
end
|
|
|
|
|
|
|
|
%------------------------------------------------------------------------------------
|
|
|
|
|
|
function popLogml = computePopulationLogml(pops, adjprior, priorTerm)
|
|
% Palauttaa length(pops)*1 taulukon, jossa on laskettu korikohtaiset
|
|
% logml:t koreille, jotka on määritelty pops-muuttujalla.
|
|
|
|
global COUNTS_IN;
|
|
global SUMCOUNTS_IN;
|
|
x = size(COUNTS_IN,1);
|
|
y = size(COUNTS_IN,2);
|
|
z = length(pops);
|
|
|
|
popLogml = ...
|
|
squeeze(sum(sum(reshape(...
|
|
gammaln(repmat(adjprior,[1 1 length(pops)]) + COUNTS_IN(:,:,pops)) ...
|
|
,[x y z]),1),2)) - sum(gammaln(1+SUMCOUNTS_IN(pops,:)),2) - priorTerm;
|
|
|
|
|
|
%----------------------------------------------------------------------------
|
|
|
|
|
|
function dist2 = laskeOsaDist(inds2, dist, ninds)
|
|
% Muodostaa dist vektorista osavektorin, joka sisältää yksilöiden inds2
|
|
% väliset etäisyydet. ninds=kaikkien yksilöiden lukumäärä.
|
|
|
|
ninds2 = length(inds2);
|
|
apu = zeros(nchoosek(ninds2,2),2);
|
|
rivi = 1;
|
|
for i=1:ninds2-1
|
|
for j=i+1:ninds2
|
|
apu(rivi, 1) = inds2(i);
|
|
apu(rivi, 2) = inds2(j);
|
|
rivi = rivi+1;
|
|
end
|
|
end
|
|
apu = (apu(:,1)-1).*ninds - apu(:,1) ./ 2 .* (apu(:,1)-1) + (apu(:,2)-apu(:,1));
|
|
dist2 = dist(apu);
|
|
|
|
|
|
%----------------------------------------------------------------------------------------
|
|
|
|
|
|
function Z = linkage(Y, method)
|
|
[k, n] = size(Y);
|
|
m = (1+sqrt(1+8*n))/2;
|
|
if k ~= 1 | m ~= fix(m)
|
|
error('The first input has to match the output of the PDIST function in size.');
|
|
end
|
|
if nargin == 1 % set default switch to be 'co'
|
|
method = 'co';
|
|
end
|
|
method = lower(method(1:2)); % simplify the switch string.
|
|
monotonic = 1;
|
|
Z = zeros(m-1,3); % allocate the output matrix.
|
|
N = zeros(1,2*m-1);
|
|
N(1:m) = 1;
|
|
n = m; % since m is changing, we need to save m in n.
|
|
R = 1:n;
|
|
for s = 1:(n-1)
|
|
X = Y;
|
|
[v, k] = min(X);
|
|
i = floor(m+1/2-sqrt(m^2-m+1/4-2*(k-1)));
|
|
j = k - (i-1)*(m-i/2)+i;
|
|
Z(s,:) = [R(i) R(j) v]; % update one more row to the output matrix A
|
|
I1 = 1:(i-1); I2 = (i+1):(j-1); I3 = (j+1):m; % these are temp variables.
|
|
U = [I1 I2 I3];
|
|
I = [I1.*(m-(I1+1)/2)-m+i i*(m-(i+1)/2)-m+I2 i*(m-(i+1)/2)-m+I3];
|
|
J = [I1.*(m-(I1+1)/2)-m+j I2.*(m-(I2+1)/2)-m+j j*(m-(j+1)/2)-m+I3];
|
|
|
|
switch method
|
|
case 'si' %single linkage
|
|
Y(I) = min(Y(I),Y(J));
|
|
case 'av' % average linkage
|
|
Y(I) = Y(I) + Y(J);
|
|
case 'co' %complete linkage
|
|
Y(I) = max(Y(I),Y(J));
|
|
case 'ce' % centroid linkage
|
|
K = N(R(i))+N(R(j));
|
|
Y(I) = (N(R(i)).*Y(I)+N(R(j)).*Y(J)-(N(R(i)).*N(R(j))*v^2)./K)./K;
|
|
case 'wa'
|
|
Y(I) = ((N(R(U))+N(R(i))).*Y(I) + (N(R(U))+N(R(j))).*Y(J) - ...
|
|
N(R(U))*v)./(N(R(i))+N(R(j))+N(R(U)));
|
|
end
|
|
J = [J i*(m-(i+1)/2)-m+j];
|
|
Y(J) = []; % no need for the cluster information about j.
|
|
|
|
% update m, N, R
|
|
m = m-1;
|
|
N(n+s) = N(R(i)) + N(R(j));
|
|
R(i) = n+s;
|
|
R(j:(n-1))=R((j+1):n);
|
|
end |