ourMELONS/matlab/parallel/admix_parallel.m
2019-12-16 16:47:21 +01:00

776 lines
No EOL
24 KiB
Matlab
Raw Blame History

function admix_parallel(options)
% ADMIX_PARALLEL is the command line version of the baps partition with
% admixture models.
% Input: options is a struct generated by parallel.m
%--------------------------------------------------------------------------
%- Syntax check out
%--------------------------------------------------------------------------
rand('state',0); % used for debugging
outp = [options.outputMat '.txt'];
inp = options.dataFile;
clusters = options.clusters;
fprintf(1,'Parallel computing...\n');
fprintf(1,'Admixture analysis for cluster(s): %s.\n',num2str(clusters));
global COUNTS; global PARTITION; global SUMCOUNTS;
clearGlobalVars;
struct_array = load(options.dataFile);
if isfield(struct_array,'c') %Matlab versio
c = struct_array.c;
if ~isfield(c,'PARTITION') | ~isfield(c,'rowsFromInd')
disp('*** ERROR: Incorrect data format');
return
end
elseif isfield(struct_array,'PARTITION') %Mideva versio
c = struct_array;
if ~isfield(c,'rowsFromInd')
disp('*** ERROR: Incorrect data format');
return
end
else
disp('*** ERROR: Incorrect data format');
return;
end
if isfield(c, 'gene_lengths') && ...
(strcmp(c.mixtureType,'linear_mix') | ...
strcmp(c.mixtureType,'codon_mix')) % if the mixture is from a linkage model
% Redirect the call to the linkage admixture function.
fprintf(1,'Redirecting to Linkage Model Admixture\n');
c.data = noIndex(c.data,c.noalle); % call function noindex to remove the index column
linkage_admix_parallel(c,options);
return
end
% This section is disabled, -Jing 27.10.2009
% if isfield(c, 'gene_lengths') && ...
% (strcmp(c.mixtureType,'linkage_mix') | ...
% strcmp(c.mixtureType,'codon_mix')) % if the mixture is from a linkage model
% % Redirect the call to the linkage admixture function.
% c.data = noIndex(c.data,c.noalle); % call function noindex to remove the index column
% linkage_admix(c);
% return
% end
PARTITION = c.PARTITION; COUNTS = c.COUNTS; SUMCOUNTS = c.SUMCOUNTS;
alleleCodes = c.alleleCodes; adjprior = c.adjprior; popnames = c.popnames;
rowsFromInd = c.rowsFromInd; data = c.data; npops = c.npops; noalle = c.noalle;
% answers = inputdlg({['Input the minimum size of a population that will'...
% ' be taken into account when admixture is estimated.']},...
% 'Input minimum population size',[1],...
% {'5'});
% if isempty(answers) return; end
% -------------------------------------------
% NEW: for parallel computing
% -------------------------------------------
alaRaja = options.minSize;
[npops, clusterIndex] = poistaLiianPienet(npops, rowsFromInd, alaRaja);
if length(clusterIndex)<length(clusters)
disp('*** ERROR: error in cluster labels.');
return
end
clusters = clusterIndex(clusters); % after removing outlier clusters
nloci = size(COUNTS,2);
ninds = size(data,1)/rowsFromInd;
% answers = inputdlg({['Input number of iterations']},'Input',[1],{'50'});
% if isempty(answers) return; end
iterationCount = options.iters;
% answers = inputdlg({['Input number of reference individuals from each population']},'Input',[1],{'50'});
% if isempty(answers) nrefIndsInPop = 50;
% else nrefIndsInPop = str2num(answers{1,1});
% end
nrefIndsInPop = options.refInds;
% answers = inputdlg({['Input number of iterations for reference individuals']},'Input',[1],{'10'});
% if isempty(answers) return; end
% iterationCountRef = str2num(answers{1,1});
iterationCountRef = options.refIters;
% First calculate log-likelihood ratio for all individuals:
likelihood = zeros(ninds,1);
allfreqs = computeAllFreqs2(noalle);
for ind = 1:ninds
omaFreqs = computePersonalAllFreqs(ind, data, allfreqs, rowsFromInd);
osuusTaulu = zeros(1,npops);
if PARTITION(ind)==0
% Yksil?on outlier
elseif PARTITION(ind)~=0
if PARTITION(ind)>0
osuusTaulu(PARTITION(ind)) = 1;
else
% Yksil<69>t, joita ei ole sijoitettu mihink<6E><6B>n koriin.
arvot = zeros(1,npops);
for q=1:npops
osuusTaulu = zeros(1,npops);
osuusTaulu(q) = 1;
arvot(q) = computeIndLogml(omaFreqs, osuusTaulu);
end
[iso_arvo, isoimman_indeksi] = max(arvot);
osuusTaulu = zeros(1,npops);
osuusTaulu(isoimman_indeksi) = 1;
PARTITION(ind)=isoimman_indeksi;
end
logml = computeIndLogml(omaFreqs, osuusTaulu);
logmlAlku = logml;
for osuus = [0.5 0.25 0.05 0.01]
[osuusTaulu, logml] = etsiParas(osuus, osuusTaulu, omaFreqs, logml);
end
logmlLoppu = logml;
likelihood(ind) = logmlLoppu-logmlAlku;
end
end
% Analyze further only individuals who have log-likelihood ratio larger than 3:
% ---------------------------------------
% PARALLEL COMPUTING IMPLEMENTED HERE
% ---------------------------------------
to_investigate = (find(likelihood>3))';
admix_populaatiot = unique(PARTITION(to_investigate));
validCluster = intersect(clusters, admix_populaatiot); % for the chosen clusters
ix = zeros(length(to_investigate),1);
for i = 1:length(validCluster)
ix = ix | (PARTITION(to_investigate) == validCluster(i));
end
if ~any(ix) to_investigate = [];
else to_investigate = to_investigate(ix);
end
admix_populaatiot = unique(PARTITION(to_investigate));
disp('Possibly admixed individuals in the chosen clusters: ');
if isempty(to_investigate)
disp('none');
disp('Admixture analysis terminated.');
return
else
for i = 1:length(to_investigate)
disp(num2str(to_investigate(i)));
end
end
disp(' ');
disp('clusters for possibly admixed individuals: ');
for i = 1:length(admix_populaatiot)
disp(num2str(admix_populaatiot(i)));
end
% THUS, there are two types of individuals, who will not be analyzed with
% simulated allele frequencies: those who belonged to a mini-population
% which was removed, and those who have log-likelihood ratio less than 3.
% The value in the PARTITION for the first kind of individuals is 0. The
% second kind of individuals can be identified, because they do not
% belong to "to_investigate" array. When the results are presented, the
% first kind of individuals are omitted completely, while the second kind
% of individuals are completely put to the population, where they ended up
% in the mixture analysis. These second type of individuals will have a
% unit p-value.
% Simulate allele frequencies a given number of times and save the average
% result to "proportionsIt" array.
proportionsIt = zeros(ninds,npops);
for iterationNum = 1:iterationCount
disp(['Iter: ' num2str(iterationNum)]);
allfreqs = simulateAllFreqs(noalle); % Allele frequencies on this iteration.
for ind=to_investigate
%disp(num2str(ind));
omaFreqs = computePersonalAllFreqs(ind, data, allfreqs, rowsFromInd);
osuusTaulu = zeros(1,npops);
if PARTITION(ind)==0
% Yksil?on outlier
elseif PARTITION(ind)~=0
if PARTITION(ind)>0
osuusTaulu(PARTITION(ind)) = 1;
else
% Yksil<69>t, joita ei ole sijoitettu mihink<6E><6B>n koriin.
arvot = zeros(1,npops);
for q=1:npops
osuusTaulu = zeros(1,npops);
osuusTaulu(q) = 1;
arvot(q) = computeIndLogml(omaFreqs, osuusTaulu);
end
[iso_arvo, isoimman_indeksi] = max(arvot);
osuusTaulu = zeros(1,npops);
osuusTaulu(isoimman_indeksi) = 1;
PARTITION(ind)=isoimman_indeksi;
end
logml = computeIndLogml(omaFreqs, osuusTaulu);
for osuus = [0.5 0.25 0.05 0.01]
[osuusTaulu, logml] = etsiParas(osuus, osuusTaulu, omaFreqs, logml);
end
end
proportionsIt(ind,:) = proportionsIt(ind,:).*(iterationNum-1) + osuusTaulu;
proportionsIt(ind,:) = proportionsIt(ind,:)./iterationNum;
end
end
%disp(['Creating ' num2str(nrefIndsInPop) ' reference individuals from ']);
%disp('each population.');
%allfreqs = simulateAllFreqs(noalle); % Simuloidaan alleelifrekvenssisetti
allfreqs = computeAllFreqs2(noalle); % Koitetaan t<>llaista.
% Initialize the data structures, which are required in taking the missing
% data into account:
n_missing_levels = zeros(npops,1); % number of different levels of "missingness" in each pop (max 3).
missing_levels = zeros(npops,3); % the mean values for different levels.
missing_level_partition = zeros(ninds,1); % level of each individual (one of the levels of its population).
for i=1:npops
inds = find(PARTITION==i);
% Proportions of non-missing data for the individuals:
non_missing_data = zeros(length(inds),1);
for j = 1:length(inds)
ind = inds(j);
non_missing_data(j) = length(find(data((ind-1)*rowsFromInd+1:ind*rowsFromInd,:)>0)) ./ (rowsFromInd*nloci);
end
if all(non_missing_data>0.9)
n_missing_levels(i) = 1;
missing_levels(i,1) = mean(non_missing_data);
missing_level_partition(inds) = 1;
else
[ordered, ordering] = sort(non_missing_data);
%part = learn_simple_partition(ordered, 0.05);
part = learn_partition_modified(ordered);
aux = sortrows([part ordering],2);
part = aux(:,1);
missing_level_partition(inds) = part;
n_levels = length(unique(part));
n_missing_levels(i) = n_levels;
for j=1:n_levels
missing_levels(i,j) = mean(non_missing_data(find(part==j)));
end
end
end
% Create and analyse reference individuals for populations
% with potentially admixed individuals:
refTaulu = zeros(npops,100,3);
for pop = admix_populaatiot'
for level = 1:n_missing_levels(pop)
potential_inds_in_this_pop_and_level = ...
find(PARTITION==pop & missing_level_partition==level &...
likelihood>3); % Potential admix individuals here.
if ~isempty(potential_inds_in_this_pop_and_level)
%refData = simulateIndividuals(nrefIndsInPop,rowsFromInd,allfreqs);
refData = simulateIndividuals(nrefIndsInPop, rowsFromInd, allfreqs, ...
pop, missing_levels(pop,level));
disp(['Analysing the reference individuals from pop ' num2str(pop) ' (level ' num2str(level) ').']);
refProportions = zeros(nrefIndsInPop,npops);
for iter = 1:iterationCountRef
%disp(['Iter: ' num2str(iter)]);
allfreqs = simulateAllFreqs(noalle);
for ind = 1:nrefIndsInPop
omaFreqs = computePersonalAllFreqs(ind, refData, allfreqs, rowsFromInd);
osuusTaulu = zeros(1,npops);
osuusTaulu(pop)=1;
logml = computeIndLogml(omaFreqs, osuusTaulu);
for osuus = [0.5 0.25 0.05 0.01]
[osuusTaulu, logml] = etsiParas(osuus, osuusTaulu, omaFreqs, logml);
end
refProportions(ind,:) = refProportions(ind,:).*(iter-1) + osuusTaulu;
refProportions(ind,:) = refProportions(ind,:)./iter;
end
end
for ind = 1:nrefIndsInPop
omanOsuus = refProportions(ind,pop);
if round(omanOsuus*100)==0
omanOsuus = 0.01;
end
if abs(omanOsuus)<1e-5
omanOsuus = 0.01;
end
refTaulu(pop, round(omanOsuus*100),level) = refTaulu(pop, round(omanOsuus*100),level)+1;
end
end
end
end
% Rounding of the results:
proportionsIt = proportionsIt.*100; proportionsIt = round(proportionsIt);
proportionsIt = proportionsIt./100;
for ind = 1:ninds
if ~any(to_investigate==ind)
if PARTITION(ind)>0
proportionsIt(ind,PARTITION(ind))=1;
end
else
% In case of a rounding error, the sum is made equal to unity by
% fixing the largest value.
if (PARTITION(ind)>0) & (sum(proportionsIt(ind,:)) ~= 1)
[isoin,indeksi] = max(proportionsIt(ind,:));
erotus = sum(proportionsIt(ind,:))-1;
proportionsIt(ind,indeksi) = isoin-erotus;
end
end
end
% Calculate p-value for each individual:
uskottavuus = zeros(ninds,1);
for ind = 1:ninds
pop = PARTITION(ind);
if pop==0 % Individual is outlier
uskottavuus(ind)=1;
elseif isempty(find(to_investigate==ind))
% Individual had log-likelihood ratio<3
uskottavuus(ind)=1;
else
omanOsuus = proportionsIt(ind,pop);
if abs(omanOsuus)<1e-5
omanOsuus = 0.01;
end
if round(omanOsuus*100)==0
omanOsuus = 0.01;
end
level = missing_level_partition(ind);
refPienempia = sum(refTaulu(pop, 1:round(100*omanOsuus), level));
uskottavuus(ind) = refPienempia / nrefIndsInPop;
end
end
% tulostaAdmixtureTiedot(proportionsIt, uskottavuus, alaRaja, iterationCount);
% viewPartition(proportionsIt, popnames);
c.proportionsIt = proportionsIt;
c.pvalue = uskottavuus; % Added by Jing
c.mixtureType = 'admix'; % Jing
c.admixnpops = npops;
c.clusters = clusters; % added for parallel computing
c.minsize = alaRaja;
c.iters = iterationCount;
c.refInds = nrefIndsInPop;
c.refIters = iterationCountRef;
fprintf(1,'Saving the result...')
try
% save(options.outputMat, 'c');
save(options.outputMat, 'c','-v7.3'); % added by Lu Cheng, 08.06.2012
fprintf(1,'Finished.\n');
catch
display('*** ERROR in saving the result.');
end
%----------------------------------------------------------------------------
function [npops, clusterIndex] = poistaLiianPienet(npops, rowsFromInd, alaraja)
% Muokkaa tulokset muotoon, jossa outlier yksil<69>t on
% poistettu. Tarkalleen ottaen poistaa ne populaatiot,
% joissa on v<>hemm<6D>n kuin 'alaraja':n verran yksil<69>it?
% NEW: clusterIndex is output for parallel computing. - Jing
global PARTITION;
global COUNTS;
global SUMCOUNTS;
clusterIndex = [1:npops]';
popSize=zeros(1,npops);
for i=1:npops
popSize(i)=length(find(PARTITION==i));
end
miniPops = find(popSize<alaraja);
if length(miniPops)==0
return;
end
outliers = [];
for pop = miniPops
inds = find(PARTITION==pop);
disp('Removed individuals: ');
disp(num2str(inds));
outliers = [outliers; inds];
clusterIndex(pop) = 0;
end
ninds = length(PARTITION);
PARTITION(outliers) = 0;
korit = unique(PARTITION(find(PARTITION>0)));
for n=1:length(korit)
kori = korit(n);
yksilot = find(PARTITION==kori);
PARTITION(yksilot) = n;
clusterIndex(kori) = n;
end
COUNTS(:,:,miniPops) = [];
SUMCOUNTS(miniPops,:) = [];
npops = npops-length(miniPops);
%------------------------------------------------------------------------
function clearGlobalVars
global COUNTS; COUNTS = [];
global SUMCOUNTS; SUMCOUNTS = [];
global PARTITION; PARTITION = [];
global POP_LOGML; POP_LOGML = [];
%--------------------------------------------------------
function allFreqs = computeAllFreqs2(noalle)
% Lis<69><73> a priori jokaista alleelia
% joka populaation joka lokukseen j 1/noalle(j) verran.
global COUNTS;
global SUMCOUNTS;
max_noalle = size(COUNTS,1);
nloci = size(COUNTS,2);
npops = size(COUNTS,3);
sumCounts = SUMCOUNTS+ones(size(SUMCOUNTS));
sumCounts = reshape(sumCounts', [1, nloci, npops]);
sumCounts = repmat(sumCounts, [max_noalle, 1 1]);
prioriAlleelit = zeros(max_noalle,nloci);
for j=1:nloci
prioriAlleelit(1:noalle(j),j) = 1/noalle(j);
end
prioriAlleelit = repmat(prioriAlleelit, [1,1,npops]);
counts = COUNTS + prioriAlleelit;
allFreqs = counts./sumCounts;
function allfreqs = simulateAllFreqs(noalle)
% Lis<69><73> jokaista alleelia joka populaation joka lokukseen j 1/noalle(j)
% verran. N<>in saatuja counts:eja vastaavista Dirichlet-jakaumista
% simuloidaan arvot populaatioiden alleelifrekvensseille.
global COUNTS;
max_noalle = size(COUNTS,1);
nloci = size(COUNTS,2);
npops = size(COUNTS,3);
prioriAlleelit = zeros(max_noalle,nloci);
for j=1:nloci
prioriAlleelit(1:noalle(j),j) = 1/noalle(j);
end
prioriAlleelit = repmat(prioriAlleelit, [1,1,npops]);
counts = COUNTS + prioriAlleelit;
allfreqs = zeros(size(counts));
for i=1:npops
for j=1:nloci
simuloidut = randdir(counts(1:noalle(j),j,i) , noalle(j));
allfreqs(1:noalle(j),j,i) = simuloidut;
end
end
%--------------------------------------------------------------------------
function refData = simulateIndividuals(n,rowsFromInd,allfreqs,pop, missing_level)
% simulate n individuals from population pop, such that approximately
% proportion "missing_level" of the alleles are present.
nloci = size(allfreqs,2);
refData = zeros(n*rowsFromInd,nloci);
counter = 1; % which row will be generated next.
for ind = 1:n
for loc = 1:nloci
for k=0:rowsFromInd-1
if rand<missing_level
refData(counter+k,loc) = simuloiAlleeli(allfreqs,pop,loc);
else
refData(counter+k,loc) = -999;
end
end
end
counter = counter+rowsFromInd;
end
function all = simuloiAlleeli(allfreqs,pop,loc)
% Simuloi populaation pop lokukseen loc alleelin.
freqs = allfreqs(:,loc,pop);
cumsumma = cumsum(freqs);
arvo = rand;
isommat = find(cumsumma>arvo);
all = min(isommat);
%--------------------------------------------------------------------------
function omaFreqs = computePersonalAllFreqs(ind, data, allFreqs, rowsFromInd)
% Laskee npops*(rowsFromInd*nloci) taulukon, jonka kutakin saraketta
% vastaa yksil<69>n ind alleeli. Eri rivit ovat alleelin alkuper<65>frekvenssit
% eri populaatioissa. Jos yksil<69>lt?puuttuu jokin alleeli, niin vastaavaan
% kohtaa tulee sarake ykk<6B>si?
global COUNTS;
nloci = size(COUNTS,2);
npops = size(COUNTS,3);
rows = data(computeRows(rowsFromInd, ind, 1),:);
omaFreqs = zeros(npops, (rowsFromInd*nloci));
pointer = 1;
for loc=1:size(rows,2)
for all=1:size(rows,1)
if rows(all,loc)>=0
try,
omaFreqs(:,pointer) = ...
reshape(allFreqs(rows(all,loc),loc,:), [npops,1]);
catch
a=0;
end
else
omaFreqs(:,pointer) = ones(npops,1);
end
pointer = pointer+1;
end
end
%---------------------------------------------------------------------------
function loggis = computeIndLogml(omaFreqs, osuusTaulu)
% Palauttaa yksil<69>n logml:n, kun oletetaan yksil<69>n alkuper<65>t
% m<><6D>ritellyiksi kuten osuusTaulu:ssa.
apu = repmat(osuusTaulu', [1 size(omaFreqs,2)]);
apu = apu .* omaFreqs;
apu = sum(apu);
apu = log(apu);
loggis = sum(apu);
%--------------------------------------------------------------------------
function osuusTaulu = suoritaMuutos(osuusTaulu, osuus, indeksi)
% P<>ivitt<74><74> osuusTaulun muutoksen j<>lkeen.
global COUNTS;
npops = size(COUNTS,3);
i1 = rem(indeksi,npops);
if i1==0, i1 = npops; end;
i2 = ceil(indeksi / npops);
osuusTaulu(i1) = osuusTaulu(i1)-osuus;
osuusTaulu(i2) = osuusTaulu(i2)+osuus;
%-------------------------------------------------------------------------
function [osuusTaulu, logml] = etsiParas(osuus, osuusTaulu, omaFreqs, logml)
ready = 0;
while ready ~= 1
muutokset = laskeMuutokset4(osuus, osuusTaulu, omaFreqs, logml);
[maxMuutos, indeksi] = max(muutokset(1:end));
if maxMuutos>0
osuusTaulu = suoritaMuutos(osuusTaulu, osuus, indeksi);
logml = logml + maxMuutos;
else
ready = 1;
end
end
%---------------------------------------------------------------------------
function muutokset = laskeMuutokset4(osuus, osuusTaulu, omaFreqs, logml)
% Palauttaa npops*npops taulun, jonka alkio (i,j) kertoo, mik?on
% muutos logml:ss? mik<69>li populaatiosta i siirret<65><74>n osuuden verran
% todenn<6E>k<EFBFBD>isyysmassaa populaatioon j. Mik<69>li populaatiossa i ei ole
% mit<69><74>n siirrett<74>v<EFBFBD><76>, on vastaavassa kohdassa rivi nollia.
global COUNTS;
npops = size(COUNTS,3);
notEmpty = find(osuusTaulu>0.005);
muutokset = zeros(npops);
empties = ~notEmpty;
for i1=notEmpty
osuusTaulu(i1) = osuusTaulu(i1)-osuus;
for i2 = [1:i1-1 i1+1:npops]
osuusTaulu(i2) = osuusTaulu(i2)+osuus;
loggis = computeIndLogml(omaFreqs, osuusTaulu);
muutokset(i1,i2) = loggis-logml;
osuusTaulu(i2) = osuusTaulu(i2)-osuus;
end
osuusTaulu(i1) = osuusTaulu(i1)+osuus;
end
function g=randga(a,b)
flag = 0;
if a>1
c1 = a-1; c2 = (a-(1/(6*a)))/c1; c3 = 2/c1; c4 = c3+2; c5 = 1/sqrt(a);
U1=-1;
while flag == 0,
if a<=2.5,
U1=rand;U2=rand;
else
while ~(U1>0 & U1<1),
U1=rand;U2=rand;
U1 = U2 + c5*(1-1.86*U1);
end %while
end %if
W = c2*U2/U1;
if c3*U1+W+(1/W)<=c4,
flag = 1;
g = c1*W/b;
elseif c3*log(U1)-log(W)+W<1,
flag = 1;
g = c1*W/b;
else
U1=-1;
end %if
end %while flag
elseif a==1
g=sum(-(1/b)*log(rand(a,1)));
else
while flag == 0,
U = rand(2,1);
if U(1)>exp(1)/(a+exp(1)),
g = -log(((a+exp(1))*(1-U(1)))/(a*exp(1)));
if U(2)<=g^(a-1),
flag = 1;
end %if
else
g = ((a+exp(1))*U(1)/((exp(1))^(1/a)));
if U(2)<=exp(-g),
flag = 1;
end %if
end %if
end %while flag
g=g/b;
end %if;
%-------------------------------------------------
function svar=randdir(counts,nc)
% K<>ytt<74>esim randdir([10;30;60],3)
svar=zeros(nc,1);
for i=1:nc
svar(i,1)=randga(counts(i,1),1);
end
svar=svar/sum(svar);
%-------------------------------------------------------------------------------------
function rows = computeRows(rowsFromInd, inds, ninds)
% Individuals inds have been given. The function returns a vector,
% containing the indices of the rows, which contain data from the
% individuals.
rows = inds(:, ones(1,rowsFromInd));
rows = rows*rowsFromInd;
miinus = repmat(rowsFromInd-1 : -1 : 0, [ninds 1]);
rows = rows - miinus;
rows = reshape(rows', [1,rowsFromInd*ninds]);
%--------------------------------------------------------------------------
%-----
function str = ownNum2Str(number)
absolute = abs(number);
if absolute < 1000
str = num2str(number);
elseif absolute < 10000000
first_three = rem(number,1000);
next_four = (number - first_three) /1000;
first_three = abs(first_three);
if first_three<10
first_three = ['00' num2str(first_three)];
elseif first_three<100
first_three = ['0' num2str(first_three)];
else
first_three = num2str(first_three);
end;
str = [num2str(next_four) first_three];
elseif absolute < 100000000
first_four = rem(number,10000);
next_four = (number - first_four) /10000;
first_four = abs(first_four);
if first_four<10
first_four = ['000' num2str(first_four)];
elseif first_four<100
first_four = ['00' num2str(first_four)];
elseif first_four<1000
first_four = ['0' num2str(first_four)];
else
first_four = num2str(first_four);
end;
str = [num2str(next_four) first_four];
else
str = num2str(number);
end;
%------------------------------------------------
function part = learn_partition_modified(ordered)
% This function is called only if some individual has less than 90 per cent
% non-missing data. The function uses fuzzy clustering for the "non-missingness"
% values, finding maximum three clusters. If two of the found clusters are such
% that all the values are >0.9, then those two are further combined.
part = learn_simple_partition(ordered,0.05);
nclust = length(unique(part));
if nclust==3
mini_1 = min(ordered(find(part==1)));
mini_2 = min(ordered(find(part==2)));
mini_3 = min(ordered(find(part==3)));
if mini_1>0.9 & mini_2>0.9
part(find(part==2)) = 1;
part(find(part==3)) = 2;
elseif mini_1>0.9 & mini_3>0.9
part(find(part==3)) = 1;
elseif mini_2>0.9 & mini_3>0.9
% This is the one happening in practice, since the values are
% ordered, leading to mini_1 <= mini_2 <= mini_3
part(find(part==3)) = 2;
end
end